Chua's Oscillator


The Chua's oscillator is a simple nonlinear 3rd-order electronic circuit, developed by Leon Chua, showing a rich variety of nonlinear dynamical phenomena, including all of the standard bifurcations and routes to chaos.


Simulation

Manual


Circuit

     


Figure 1: Chua’s oscillator and Chua’s diode

The applet shows a simulation of Chua's oscillator, plotting the voltage measured across C1 against the voltage measured across C2. This corresponds to the display on an X-Y oscilloscope with probes connected across these capacitors. The initial values of the components used in the applet lead to an equilibrium point and are the values used to build a real circuit (see here for details). The different dynamical behaviours - periodic orbits, bifurcations etc.- can be observed by carefully decreasing R or C1, (e.g. decrease R in steps of 10ohm to 1.5 kohm ). Eventually, the circuit shows strange attractors and chaotic dynamic, interlaced with periodic windows. The simulation compares well with what is actually seen on an oscilloscope. Chaos seems to develop following a period-doubling route, but other routes to chaos can be followed, changing the values of the components (see the book edited by R. N. Madan [3] for an extensive gallery of attractors from Chua's oscillator).

Details on how the circuit works can be found in this Kennedy's paper, whereas the description of how to build the physical circuit can be found in another paper by Kennedy. More details on the design of the Chua's oscillator and the related piece-wise linear resistor (called the Chua's diode) can be found here.

The state equations simulated by the applet have a different form with respect to the one used in the original Chua's paper [2], (see also [3], page xv).

In the applet the state variable are defined as
state variable
The normalized time
normalized time
The state equations become
state equations
where the nonlinear resistor (called the Chua's diode) is
chua's diode
and the other parameters are
chua's diode
More details on variable scaling can be found here.


Dynamical behaviours

A few different dynamical behaviours observed for particular values of the bifurcation parameter R are listed in Table I, where the eigenvalues in the inner and outer linear regions are also shown.


Table I: A few different dynamical behaviours and the corresponding values of the bifurcation parameter R

R
(ohm)
Dynamical
behaviour
Eigenvalues
Inner regionOuter region
2000equilibrium point 0.400811
-0.0693060 + j0.281099
-0.0693060  - j0.281099
-0.185191
-0.00580252 + j0.247304
-0.00580252  - j0.247304
1911Hopf bifurcation 0.376557
-0.0741200 + j0.275424
-0.0741200  - j0.275424
-0.230693
 0.000007 + j0.249053
 0.000007  - j0.249053
1870period 1 limit cycle 0.364676
-0.0765264 + j0.272294
-0.0765264  - j0.272294
-0.252123
 0.00237552 + j0.250134
 0.00237552  - j0.250134
1850period 2 limit cycle 0.358702
-0.0777453 + j0.270625
-0.0777453  - j0.270625
-0.262704
 0.00346022 + j0.250707
 0.00346022  - j0.250707
1840period 4 limit cycle 0.355669
-0.0783660 + j0.269752
-0.0783660  - j0.269752
-0.268029
 0.00398554 + j0.251002
 0.00398554  - j0.251002
1830spiral-Chua strange attractor 0.352604
-0.0789943 + j0.268853
-0.0789943  - j0.268853
-0.273378
 0.00449965 + j0.251303
 0.00449965  - j0.251303
1828period 3 periodic window 0.351987
-0.0791209 + j0.0791208
-0.0791209  - j0.0791208
-0.274451
 0.00460114 + j0.251364
 0.00460114  - j0.251364
1820spiral-Chua strange attractor 0.349507
-0.0796301 + j0.267925
-0.0796301  - j0.267925
-0.278753
 0.00500269 + j0.251610
 0.00500269  - j0.251610
1796double-scroll strange attractor 0.341937
-0.0811869 + j0.265577
-0.0811869  - j0.265577
-0.291762
 0.00616566 + j0.252364
 0.00616566  - j0.252364
16404+4 periodic window 0.287098
-0.0922986 + j0.244676
-0.0922986  - j0.244676
-0.381179
 0.0123424 + j0.257658
 0.0123424  - j0.257658
1630double-scroll strange attractor 0.283174
-0.0930582 + j0.242884
-0.0930582  - j0.242884
-0.387268
 0.0126653 + j0.258008
 0.0126653  - j0.258008
1610.53+3 periodic window 0.275345
-0.0945477 + j0.239176
-0.0945477  - j0.239176
-0.399290
 0.0132725 + j0.258692
 0.0132725  - j0.258692
15712+2 periodic window 0.258681
-0.0975737 + j0.230666
-0.0975737  - j0.230666
-0.424292
 0.0144156 + j0.260077
 0.0144156  - j0.260077
1530double-scroll strange attractor 0.240021
-0.100653 + j0.220073
-0.100653  - j0.220073
-0.451254
 0.0154866 + j0.261509
 0.0154866  - j0.261509
1515large limit cycle 0.232773
-0.101737 + j0.215637
-0.101737  - j0.215637
-0.461398
 0.0158509 + j0.262029
 0.0158509  - j0.262029


Bibliography


Last updated: