Magnetostatica nei mezzi anisotropi.

Nota di V. Daniele
presentata dal Socio nazionale residente Mario Boella
nell'adunanza dell'11 Novembre 1970

Riassunto. — Viene considerato il problema magnetostatico nel caso di mezzo anisotropo in presenza di una distribuzione generica di correnti. L'uso di una opportuna identità vettoriale consente di semplificare notevolmente il problema. Come esempio pratico viene calcolato il campo dovuto ad un filo rettilineo percorso da corrente costante.

Summary. — The magnetostatic problem in an anisotropic medium with an arbitrary distribution of sources is considered. The use of a suitable vectorial relationship allow us to simplify the approach. Finally, as example, the field due to a source line is evaluated.

I. — Equazioni della magnetostatica

Dalle equazioni di Maxwell supponendo $\frac{\partial}{\partial t} = 0$ si deducono le seguenti equazioni della magnetostatica:

(1.1) $\nabla \times \mathbf{H} = \mathbf{J}$

(1.2) $\nabla \cdot \mathbf{B} = 0$

dove:

\mathbf{H} è il campo magnetico

\mathbf{B} è l'induzione magnetica

\mathbf{J} è la densità di corrente.
In un punto \(P \) individuato dal vettore \(r = P - O \) con
\[
\frac{\partial}{\partial r} (\mathbf{B} \cdot \hat{r}) = \mathbf{H}
\]

do \(\mathbf{B} \) è la permeabilità magnetica del vuoto e \(\mathbf{H} \) è la densità magnetostatica del materiale, si può stabilire che la funzione di

deporti la radice \(f \) che rappresenta la quantità del campo magnetostatico

\[
\mathbf{H} = \frac{\mathbf{B}}{\mu_0} = \mathbf{H}_0
\]

dove \(\mathbf{H}_0 \) è il campo magnetostatico a distanza infinita dal materiale.

Se si considera la superficie di discontinuità e si applica il teorema della divergenza, si ottiene:

\[
\int_{S} \nabla \cdot \mathbf{B} \, dS = \oint_{C} \mathbf{B} \cdot d\mathbf{r}
\]

1. POTENZIALE VITTORIO

Dall'equazione (1.4) segue l'esistenza di un vettore \(\mathbf{A} \) tale che:

\[
\mathbf{B} = \mathbf{V} \cdot \mathbf{A}
\]

2. \(\mathbf{V} \) è un vettore normale alla superficie di discontinuità, il teorema del rotore della divergenza si ottiene:

\[
\hat{\nabla} \cdot \mathbf{V} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right)
\]

Per il vettore \(\mathbf{V} \) che rappresenta la quantità del campo magnetostatico, si ottiene:

\[
\int_{S} \mathbf{V} \cdot d\mathbf{S} = \oint_{C} \mathbf{V} \cdot d\mathbf{r}
\]

Il vettore \(\mathbf{V} \) che rappresenta la quantità del campo magnetostatico, si ottiene:

\[
\mathbf{V} = \mathbf{V}_0
\]

Concludendo, si ottiene:

\[
\frac{\partial}{\partial r} (\mathbf{V} \cdot \hat{r}) = \mathbf{V}
\]

Il vettore \(\mathbf{V} \) che rappresenta la quantità del campo magnetostatico, si ottiene:

\[
\mathbf{V} = \mathbf{V}_0
\]
La tecnica di integrazione può essere vista come un processo di accumulo di variazioni. In particolare, se si considera una funzione

\[f(x) \]

sul intervallo [a, b], l'integrale di f(x) può essere calcolato come

\[\int_{a}^{b} f(x) \, dx \]

Il risultato di tale integrazione, in ambito di problemi di modellazione, può essere interpretato come la quantità totale di qualcosa (ad esempio, quantità di calore, massa, energia, ecc.) accumulata nel momento B rispetto al momento A. Pertanto, l'integrale è la somma di infinitesimi di funzione, ciascuno dei quali rappresenta una variazione infinitesima dell'oggetto in esame.

Un esempio di tale applicazione può essere fornito dalla modellazione del flusso di un fluido attraverso una sezione del canale. In questo contesto, l'integrale può rappresentare la quantità totale di fluido che passa attraverso il canale, o la quantità di energia trasmessa, o qualsiasi altro fenomeno fisico che può essere misurato e quantificato attraverso l'integrazione.
\[\Delta \cdot \vec{\eta} \cdot \Delta = \Delta \cdot \vec{\eta} \cdot \Delta \quad (\text{e5}) \]

\[\Delta \cdot \vec{\eta} \cdot \Delta = \Delta \cdot \vec{\eta} \cdot \Delta \quad \text{Operation in the reference form.} \]

\[\vec{\eta} \cdot \vec{\eta} \cdot \Delta = \Delta \cdot \vec{\eta} \cdot \Delta \quad \text{Due to the symmetry of the operator, the product is the same.} \]

\[\vec{\eta} \cdot \vec{\eta} \cdot \Delta = \Delta \cdot \vec{\eta} \cdot \Delta \quad \text{Operation in the reference form.} \]

\[\vec{\eta} \cdot \vec{\eta} \cdot \Delta = \Delta \cdot \vec{\eta} \cdot \Delta \quad \text{Due to the symmetry of the operator, the product is the same.} \]
\[[\varepsilon, \mu] \varphi = \varphi \mu \] (8.9)
APPENDICE 2

Per la dimostrazione della (9.3) possiamo essere utilizzare

\[(\psi \psi \Delta \gamma) \cdot \nabla \Delta \gamma + \nabla \nabla \Delta \gamma - (\psi \nabla \Delta \gamma) \cdot \Delta \nabla \Delta \gamma = 0 \]