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Abstract—In this paper we present a simple, fast, novel
algorithm for building networks whose topology has high syn-
chronizability, is robust against failures, and supports efficient
communication. We show that the algorithm is able to build
these networks in a small number of steps that scales with
the networks density. In addition, we track the evolution of
different topological properties in the process of generating these
networks. The results show that the topological properties are
homogeneously distributed and the topology is less authoritative.
Furthermore, we show that the networks we generate are more
robust than random, geometric random, small-world or scale-
free networks with similar average connectivity. Finally, all of the
results indicate that the topology of these networks is entangled,
which in many cases represents an optimal topology.

I. INTRODUCTION

The model of complex networks permeates our everyday
life, due to its simplicity (a certain number of nodes represent-
ing individual sites and edges representing connections) and its
ability to grasp the essence of many different systems. Com-
monly cited examples include social networks, technological
networks, information networks, biological networks, commu-
nication networks, neural networks, ecological networks and
other natural and man-made networks. Abundant study of their
topology and models is presented in [1]–[3]. An important
topic of interest in present research is the collective behavior
in complex networks, referring especially to the synchronous
state, where all the individual sites operate in unison. The
ability of a network to synchronize is commonly referred to as
synchronizability [4]. This property of the complex networks
has many potential uses, such as: finding the optimal topology
in order to reach consensus [5], finding optimal topology
for communication or transport networks [6], improving the
performance of computational tasks [7] and understanding the
organizing principles in neural and biological networks [8].

Having in mind the importance of the synchronizability one
might ask several questions: how to rewire the network or
assign weights to the edges in order to enhance synchroniz-
ability? Where to add a small number of edges to improve
synchronizability? Which topology is the most synchronizable
and how to create it? The scientific community has given hints
or answers to some of these questions.

In [9] the authors present a rewiring algorithm, based on
simulated annealing, which improves the synchronizability of
the network. Another rewiring algorithm, which uses memory
tabu search, is proposed in [10]. In [11] the authors propose
a weighting procedure, based upon the global structure of

network pathways, so as to improve the synchronization in
scale-free networks. The authors in [12] use node and edge be-
tweenness for weighting dynamical networks. In [13] Donetti
et al. propose a stochastic algorithm, based on simulated
annealing, for producing entangled networks, i.e. networks
with extremely homogeneous structure: with respect to degree,
node distance, betweenness and loop distributions. These
kinds of networks are characterized by high synchronizability,
robustness, efficient communication, etc.

In this paper we are concerned with the issue of creating
networks with high synchronizability and robustness by using
a simple and fast algorithm. More specifically, given a fixed
number of nodes N and an average connectivity 〈k〉 we built
networks with enhanced synchronizability. In addition, we
explore some of the topological properties in order to find out
more about the obtained network topology. We argue that the
topology of the networks created by the algorithm has similar
structure and characteristics as the entangled topology. Finally,
we compare the vulnerability of the obtained networks with
random, geometric, small-world and scale-free topologies by
using the measures proposed in [14], [15].

This paper is organized as follows. In Section 2 we summa-
rize the basic results about synchronizability. In Section 3 we
give the main motivations behind the algorithm and describe
it. Results are given in Section 4, where we also inspect the
structural properties of the obtained networks. Additionally,
we compare the algorithm with other existing algorithms for
creating synchronizable networks, either from scratch or by
rewiring. Section 5 presents results related to the vulnerability
of the obtained networks. Section 6 concludes this work.

II. A MEASURE OF SYNCHRONIZABILITY

A relevant contribution in determining the stability of the
synchronized states was given in [16], [17], by using the
eigenvalues of the Laplacian matrix representing the network.
We briefly recall the main ideas in the following. Consider
a network of N identical dynamical systems with symmetric
coupling. The equations of motion for the system are: ẋi =
F (xi) + σ

∑N
j=1 LijH(xj), where i = 1, ..., N , ẋ = F (x)

is the dynamics of each uncoupled individual node, H is the
coupling function, σ is the overall coupling strength, and L is
the Laplacian matrix. The local stability of the synchronized
state xi = s,∀i is determined by the corresponding variational
equations, which can be diagonalized into N blocks of the
form ẏ = [DF (s) + λDH(s)]y where y represents different
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mode of perturbation from the synchronized state. We have
λ = σλi for the ith block, where λ1 = 0 ≤ λ2 ≤ ... ≤ λN

are the eigenvalues of L. The master stability function (MSF)
[16] for this equation determines the stability of the synchro-
nized state. In particular, the synchronized state is stable if
Λ(σλi) < 0, for each i = 2, ..., N . For large class of chaotic
oscillatory systems, there exists a bounded interval (α1, α2) on
which Λ(λ) < 0. In this case, there exist coupling strengths σ
for which the synchronized state is linearly stable, if and only
if λN/λ2 < α2/α1 [17]. The ratio Q = λN/λ2 depends only
on the network topology, while the ratio α2/α1 depends on
the dynamics in the network. Furthermore, since the interval
of the stable synchronized state is larger for smaller Q, thus,
one might conclude that smaller Q means more synchronizable
network. In practice, the MSF is not always negative only in
finite interval (see class-A networks in [18] and the dynamical
systems of class Γ0 and Γ1 [19]). However, other measures of
synchronizability often go “hand in hand” with λN/λ2 [9].

III. ALGORITHM FOR BUILDING SYNCHRONIZABLE

NETWORKS

In general, random networks have better synchronizability
than regular and might have better than small-world networks
when they are above their percolation transition [17], [20]. Fur-
thermore, small-world networks have better synchronizability
than scale-free networks [21]. In addition, Nishikawa et al.
discovered that Q decreases when the heterogeneity of some
measures of small-world networks declines, even if the average
distance increases [22]. In [20] the authors found out that Q
is proportional to the betweenness heterogeneity. Hong et al.
conclude that a small value of the maximum betweenness
centrality is an important factor for better synchronizability.
The complete correlation between homogeneity and synchro-
nizability for any connected network is given in [22]:

(1 − 1
N

)
kmax

kmin
≤ Q ≤ (N − 1)kmaxlemaxDmax〈D〉, (1)

where N is the number of nodes in the network, kmin and
kmax are the minimum and the maximum degree, respectively,
Dmax is the maximum length of the shortest path between two
nodes, lemax is the maximum normalized edge betweenness and
〈D〉 is the average length path. Eq. (1) confirms that homo-
geneous networks have high synchronizability, because in this
case kmax and lemax are smaller. However, the combination
of small network distances and homogeneous distribution of
connectivities and loads makes the network more synchroniz-
able.

The above mentioned consideration helped us in build-
ing a simple algorithm capable of reducing Q and able to
build undirected and unweighted networks with enhanced
synchronizability. Summarizing, the algorithm is based on two
premises: i. random networks show good synchronizability and
ii. homogeneous properties make a network more synchroniz-
able (see Eq. (1)).

The only two inputs in the algorithm are the number of
nodes N in the network and the average node degree 〈k〉. The
algorithm is the following.

1) N 〈k〉
2 edges are placed randomly by using the Watts and

Strogatz model with rewiring probability p = 1 [23].
2) Search for the node ni which has the maximum degree.
3) Discover all the neighbors of the node ni, choose the

node nj with the highest degree and delete the edge
between the nodes ni and nj .

4) Search for two nodes nk and nl with the lowest degree,
which are not connected together.

5) Place an edge between the nodes nk and nl.
6) Stop if an equilibrium is reached, otherwise go to 2.

The first step exploits premise i, while the rest of the steps
exploit premise ii. In addition, if the network become discon-
nected after removing the edge in the third step, the algorithm
searches for the second most connected neighbor of the node
ni, and it removes the edge between these two nodes, and
so on. There are slight chances that there is no edge of the
node ni that could be removed without disconnecting the
network. If this occurs the algorithm returns to the second
step when it chooses the second most connected node, and so
on. The algorithm stops when the equilibrium is reached. An
equilibrium is reached when the algorithm can not change the
network topology, i.e. each iteration of the algorithm alternates
the topology between two possible states. As a final result,
between the two topologies, the algorithm chooses the one
with lowest Q. The good features of the algorithm are: it
exploits only local information, i.e. the degree of the node, it
is faster and much easier to implement than the algorithm for
creating optimal topologies proposed in [13] and the rewiring
algorithms proposed in [9] and [10]. However, the algorithm
has certain drawbacks which can be noticed by looking at the
simulation results and which will be discussed in the following
Section.

IV. SIMULATION RESULTS

Using the above mentioned algorithm, we constructed two
sets of networks, each one with 50, 100, 200, 300 and 500
nodes and having average node degree 4 and 6 respectively.
For each size the number of generated networks is 10. Fig. 1
shows the averaged synchronizability Q for networks with
different number of nodes and average node degree (upper
panel 〈k〉 = 4, lower panel 〈k〉 = 6) as a function of the
algorithm iterations. The comparison of the results for the
network with N = 50 and 〈k〉 = 6 with the one obtained
in [13] shows that we get the same value for Q just after
20 iterations of the algorithm, making the proposed algorithm
faster and easier to implement than the one proposed in
[13]. On the other hand, we can compare the results for
the network where N = 200 and 〈k〉 = 6 to the ones
presented in [12] and we get a slight worse results (in our
case Q is around 10, instead of 6). Of course, here we are
addressing different problem, i.e. we want to build networks
with enhanced synchronizability from scratch, and the authors
in [12] are rewiring an existing topology in order to improve
its synchronizability.

For a small-world network with N = 50, 〈k〉 = 6, and p =
0.1 [23], we computed the average value of Q, which turned
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Figure 1. Q as a function of the iterations of the algorithm for networks with
different number of nodes N and 〈k〉 = 4 for the upper panel, and 〈k〉 = 6
for the lower panel (data are averaged over 10 networks).

out to be around 16, thus from Fig. 1 the synchronizability of
the network produced by the algorithm is 2.7 times greater,
while in the case of the scale-free network it is greater more
than 4 times. The same analysis for the networks with N =
200 and 〈k〉 = 6 shows that the algorithm produces networks
around 2.1 times better synchronizable than the small-world
and around 3.3 times than the scale-free networks.

A drawback of the proposed algorithm, as shown in Fig. 1,
is the fact that synchronizability of the obtained network
decreases (i.e Q increases) when 〈k〉 decreases or the number
of the nodes in the network N increases. This means that
algorithm might not produce a network with high synchroniz-
ability if the final aim is to produce sparse network topology.
If this is the case, then we suggest to use stochastic algorithms
for rewiring or building synchronizable topology, like the
ones proposed in [10], [12], [13]. We also performed analysis
involving the contribution of λ2 and λN in Q through the
iterations of the algorithm. Fig. 2 shows the relative increase
of λ2 and the relative decrease of λN with respect to their
initial values, i.e. the values they had at the first step of the
algorithm, as a function of Q. In this case we analyze network
with N = 200 and 〈k〉 = 6. It noticeable that the algorithm
influences λ2 more than λN , i.e. λ2 is increased by 70% with
the respect to the initial value, and λN is decreased by 30%.
This is due to the fact that the initial random network is not
homogeneous enough [22].
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Figure 2. Behavior of the relative λ2 and λN as a function of Q for network
with N = 200 and 〈k〉 = 6.
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Figure 3. Topological properties of the obtained network with N = 200
and 〈k〉 = 6.

In the next part we want to inspect the obtained networks
using some topological properties. In Fig. 3 we present
the clustering coefficient (CC), average length path (〈D〉),
maximum length path (Dmax), maximum normalized node
betweenness (BCmax), the standard deviation of the normal-
ized node betweenness (BCdev), the maximum normalized
closeness centrality (CLOmax), the standard deviation of the
normalized closeness betweenness (CLOdev), the maximum
authority value using the HITS algorithm [24] (HITSmax)
and the standard deviation of HITS values (HITSdev). These
measured are normalized with respect to their value obtained
from the initial network and are plotted as a function of
the iteration steps of the algorithm. Among all values just
〈D〉 remains almost unchanged (slightly increases) in the
resulting network, which correspond to the results shown in
[22], whereas all other properties are smaller in the resulting
network. The BCdev decreases the most, so that this property
can be a good indicator for better synchronizable networks
(see also [20]). The standard deviation of the authority rank
(represented by HITSdev) decrease by around 65%. This
supports the idea that the less authoritative the network, the
more synchronizable it is. In addition the maximum value of
the betweenness centrality decreases by around 60%, which
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is an argument that this is an efficient topology for communi-
cation networks (see [6]). Other good indicators for networks
with enhanced synchronizability are the standard deviation of
the closeness centrality (it decreases by 55%) and HITSmax

(it decreases by 50%). These results are totally correlated to
Eq. (1) which confirms that the proposed algorithm produces
networks with enhanced synchronizability. In order to com-
pletely satisfy Eq. (1) the networks should have low value
for kmax and the ratio kmax/kmin should be close to 1. The
algorithm itself satisfies both the conditions.

The homogeneous structure, the vanishing clustering co-
efficient and the short average distances are some of the
main properties of an entangled (or interwoven) topology [13],
topology which is optimal in many senses, such as: synchro-
nization, robustness and support for efficient communication.

V. VULNERABILITY OF THE PROPOSED NETWORKS

In this Section we show that the obtained networks, besides
having enhanced synchronizability, also represent a robust
topology. For a vulnerability measure we use the maximal
value of the pointwise vulnerability of the network [15] defined
as: V = maxi

E−E(i)
E . Here E is global network efficiency

[14], defined as: E = 1
N(N−1)

∑
i�=j

1
dij

and E(i) is the
network efficiency after removal of the i− th node and all its
edges. N is the total number of nodes and dij is the minimal
distance between the i − th and j − th nodes. We compare
the vulnerability of the network produced by the algorithm
with the: ER model of random network, geometric random
network, BA model of scale-free network and WS model of
small-world network. The networks had 500 nodes and average
connectivity 6. The most robust network is the optimal network
obtained from the algorithm (V = 0.0055), it was twice more
robust than the WS small-world network (V = 0.0113) and the
ER random network (V = 0.0125), 7 times more robust than
the BA scale-free network (V = 0.0371) and 17 times more
robust than the geometric random network (V = 0.0947).

VI. CONCLUDING REMARKS AND FUTURE WORK

In conclusion, we have presented a novel algorithm for
building networks whose topology has enhanced synchroniz-
ability, high robustness, and supports efficient communication
(also called entangled networks). The algorithm is fast and
very simple compared to others presented in literature. In
addition, we have inspected the topological properties in order
to give insights about the properties one topology should have
in order to be optimal and robust. The conclusion, as in [13],
is that entangled structures, i.e very homogeneous structures,
and democracy, i.e. low authority rank, are instrumental to get
synchronizability and robustness. Finally, we have shown that
the networks built with the proposed algorithm are more robust
than other networks with similar average connectivity, such as
random, geometric random, small-world and scale-free.

As future development, a possible extension to the proposed
algorithm is to take into account, at each iteration, the max-
imum edge betweenness to measure synchronizability and to
accept only topologies with lower value of maximum edge

betweenness or Q. We have to check the improvement in
performance against the additional computational burden given
by this modification.

ACKNOWLEDGMENTS

M.R. thanks the Istituto Superiore Mario Boella for financial
support.

REFERENCES

[1] Steven H. Strogatz. Exploring complex networks. Nature, 410(6825):268-
276, March 2001.

[2] R. Albert and A.-L. Barabási, ”Statistical mechanics of complex net-
works,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47-97, Jan 2002.

[3] M. E. J. Newman, ”The structure and function of complex networks,”
SIAM Review, vol. 45, no. 2, pp. 167-256, 2003.

[4] M. Jalili, A. A. Rad, M. Hasler, ”Enhancing synchronizability of dynam-
ical networks using the connection graph stability method,” International
Journal of Circuit Theory and Applications, vol. 35, no. 5-6, pp. 611-622,
2007.

[5] S. Barbarossa, G. Scutari, ”Decentralized Maximum Likelihood Estima-
tion for Sensor Networks Composed of Nonlinearly Coupled Dynamical
Systems,” IEEE Transactions on Signal Processing, Volume 55, Issue 7,
Part 1, July 2007.
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