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Abstract—In this paper we analyze the collective behaviors
of networks of Hindmarsh-Rose (HR) neurons and compare
them with the behaviors of networks of piecewise-linear (PWL)
approximations of the HR neurons. In all cases, the neurons
are assumed to be symmetrically and diffusively coupled, with
different topologies. The analysis is based on the Master Stability
Function (MSF) approach. The obtained results are verified by
numerical time domain simulations of networks of 100 neurons.
The synchronization properties of the PWL networks turn out
to be very similar to those of the HR networks, as well as the
dynamical properties of the single neurons (analyzed elsewhere).

I. INTRODUCTION

This paper is concerned with a particular aspect of the

general problem of studying the behavior of relatively large

networks (e.g., millions) of neurons and modeling/emulating

such networks. To this end, a significant common effort is

necessary, which involves several disciplines such as biology,

neuroscience, physics, mathematics, computer science, and

electronics. In this kind of research activity, it is necessary to

combine experimental studies of animal and human nervous

systems with numerical simulation of mathematical models.

From a biophysical-mathematical point of view, to model the

electrical behavior of a biological neuron is one of the main

problems. In developing such models, a compromise must

be found between two seemingly mutually exclusive require-

ments: The model for a single neuron must be computationally

simple and, at the same time, capable of mimicking almost

all the behaviors exhibited by real biological neurons (in

particular the rich firing patterns). Up to now, the simulation

of large networks of accurate neural models is generally

unrealistic if not hardware implemented. On the other hand,

the actual circuit implementations of neurons (see, e.g., [1], [2]

and references therein) exhibit behaviors only partially similar

to those of the real neurons.

In the last few years, a piecewise-linear (PWL) approx-

imation/synthesis technique has been applied towards the

implementation of nonlinear dynamical systems [3], [4] and

in particular the Hindmarsh-Rose (HR) neuron model [5], [6].

The dynamics of the single PWL model has been verified to

be qualitatively and quantitatively very similar to those of the

HR model. The circuit implementation of a single neuron is in

progress and the next step would be the circuit implementation

of a neuron network. Of course, there is no guarantee that

the collective behaviors of networks of PWL models will be

similar to those of networks of HR models. With this caveat in

mind, in this paper we analyze the synchronization properties

of networks composed of neurons described by either the

original HR model or its PWL approximation [6]. To this

end, we use the Master Stability Function (MSF) approach

[7]. It requires some restrictive assumptions (all nodes must be

identical and the coupling has to satisfy certain constraints),

but it has a straightforward application and can be a valid

benchmark for future improvement and testing. If even under

such tight hypotheses the PWL approximation did not fit the

real model, then some changes would be needed for a better

identification.

The obtained results, even if preliminary, show that the

synchronization properties of the HR networks are preserved

in the corresponding PWL networks. In particular, in Section

II a brief description of the MSF approach is given. In Sections

III and IV we evaluate the MSF for both the HR neuron and

its PWL approximation and compute the critical parameter

values for synchronization. We find that HR networks and

their PWL approximation synchronize for almost the same

values of the coupling strength. These results are validated

through extensive software simulations. Finally, in Section V

we draw some conclusions and propose future developments

of this research..

II. THE MASTER STABILITY FUNCTION APPROACH

We consider a network of N identical systems, whose state

is ξi ∈ RQ (i = 1, . . . , N ). The evolution of the global system

is described by the following set of equations:

ξ̇i = f(ξi) + gs

N
∑

j=1

Aijh(ξj), i = 1, . . . , N, (1)

where gs is the overall coupling strength. We look for condi-

tions on the matrix gsA = {gsAij} in order to obtain identical



synchronization among the subsystems, i.e., in order to get

ξ1(t) = ξ2(t) = . . . = ξN (t) = ξ(t). (2)

For the synchronous manifold described by Eq. (2) to be in-

variant, we need the row sum of A to be zero, i.e.,
∑

j Aij = 0
[7]. In this paper, the master stability equation/function ap-

proach [7] is used, because it permits to separate the contri-

bution of the identical isolated cells from that of the topology

of the network to infer the synchronization conditions. More

precisely [7], a linear transformation is applied to the vari-

ational equation of system (1) on the synchronous manifold

described by Eq. (2) to decompose it in N uncoupled systems

with evolution given by
{

ξ̇ = f(ξ),

δ̇k =
(

Df(ξ) + (αk + i βk)Dh(ξ)
)

δk, k = 1, . . . , N,
(3)

where Df(ξ) and Dh(ξ) are the Jacobian matrices of f(ξ) and

h(ξ), respectively, whereas (α1 + i β1), . . . , (αN + i βN) ∈ C

are the eigenvalues of gsA. We restrict our study to symmetric

coupling, then all the eigenvalues of the coupling matrix are

real and non positive [8]. Henceforth, we assume the following

ordering for the real eigenvalues: 0 = α1 ≥ α2 ≥ . . . ≥ αN .

The motion along α1 = 0 is the motion on the synchronous

manifold, so in order to study its stability we can focus on the

remaining eigenvalues, which take into account the orthogonal

modes. Since the N systems of Eq. (3) are uncoupled, we

can drop the index k and call Λ(α) the maximum Lyapunov

exponent of system (3). This is called the Master Stability

Function (MSF), and can be numerically evaluated by using,

for instance, the algorithm proposed in [9]. A coupling scheme

described by a symmetric matrix gsA such that Λ(α) < 0 for

all α2 . . . , αN eigenvalues of gsA (except α1 = 0) will lead

to a stable synchronous manifold, as all the variations perpen-

dicular to the synchronous manifold will fade exponentially.

III. MSF FOR THE HR MODEL

We consider networks of identical Hindmarsh-Rose (HR)

neurons [5] symmetrically coupled in a linear way. Being ξi =
[xi(t), yi(t), zi(t)]

T the state of the i-th neuron in the network

(i = 1, . . . , N , ξT denotes transpose of vector ξ), the equations

governing the system evolution are














ẋi = yi − zi + I − x3
i + bx2

i + gs

∑N

j=1
Aijxj ,

ẏi = −yi + 1 − 5x2
1,

żi = µ
(

s(xi − x0) − zi

)

,

(4)

with b = 2.96, s = 4, µ = 0.01, x0 = −1.6. The coupling

is on variable x, which plays the same role as the membrane

potential in a biological neuron. The parameter I plays the

same role as the input membrane current in a biological

neuron.

Define the Global Quadratic Error (GQE) as

e2(t) =
(

std(x(t))
)2

+
(

std(y(t))
)2

+
(

std(z(t))
)2

. (5)

In Eq. (5) x(t), y(t) and z(t) are defined as x(t) =
[x1(t), . . . , xN (t)]T , y(t) = [y1(t), . . . , yN(t)]T , and

z(t) = [z1(t), . . . , zN (t)]T and std denotes the standard devi-

ation. If the network reaches identical synchronization at time

t0, then e2(t) = 0 for any t ≥ t0, as this condition implies

that the dispersion is zero in each of the three dimensions. As

a figure of merit for this behavior, we use the time average of

the GQE e2(t):

〈

e2
〉

= lim
T→∞

1

T

∫ t0+T

t0

e2(τ) d τ. (6)

We approximate Eq. (6) with a time average over an interval

large enough after the initial transient has been discarded.

More precisely, we used t0 = 104, T = 2 · 103, and sampling

time ∆t = 0.1.

We now fix I = 2.5, a value which leads to a bursting

behavior in both the HR and PWL models [6]. In Fig. 1 we

plotted the MSF Λ(α) (solid line) with α ∈ [−10, 0]. To

achieve identical synchronization, we must have α < −0.5
approximately. To validate this result, let us consider a network
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Figure 1. MSF for the real HR neuron (Eq. (4), solid line) and PWL
approximation (Eq. (10), dashed line). The dashed grey lines highlight the
abscissa of the intersection between Λ = 0 and the two MSFs.

of 100 neurons coupled in a diffusive way as a ring, so that

the coupling matrix is
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The spectrum of matrix A is given by γ1 = 0, γ2,3 =
−3.9510−3, . . . , γ100 = −4. As α = gsγ, in order to obtain

identical synchronization we should have gs > 500/3.95 ≈
126. A time domain analysis confirms the result. In fact, in



the plot of the time average of the GQE for different values

of gs reported in Fig. 2 (upper panel, solid line) for gs > 126
(see the vertical dashed grey line) approximately, we have an

extremely low mean value.

If we consider an all-to-all coupling, so that matrix A is

described by
{

Aii = −99,

Aij = 1, i 6= j,
(8)

for i, j = 1, . . . , N , then the spectrum of A is γ1 = 0,

γ2,...,100 = −100. The condition to obtain identical synchro-

nization is now gs > 0.5/100 = 0.005. Again, the plot of the

time average of the GQE for different values of gs reported

in Fig. 2 (lower panel, solid line) confirms the result, as for

gs > 0.005 (see the vertical dashed grey line) approximately,

we have an abrupt decrease of the mean value.
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Figure 2. Time average of GQE for networks of 100 HR (solid line) or PWL
(dashed line) neurons with two-nearest-neighbors ring coupling (upper panel)
and all-to-all coupling (lower panel). The dashed grey lines highlight the value
of gs where the transition from the asynchronous state to the synchronous
one occurs.

IV. MSF FOR THE PWL MODEL

We now consider a model of bursting neurons derived from

Eq. (4) by approximating the nonlinear part of the vector field

on the righthand side with a PWL function [6]. More precisely,

if {ϕ1(x), . . . , ϕ(x)L} is the chosen base of PWL functions,

we have that
{

x3 − bx2 =
∑L

ℓ=1
w1

ℓϕℓ(x),

5x2 =
∑L

ℓ=1
w2

ℓ ϕℓ(x),
(9)

so the model for the i-the neuron is now














ẋi = yi − zi + I −
∑L

ℓ=1
w1

ℓ ϕℓ(xi) + gs

∑N

j=1
Aijxj ,

ẏi = −yi + 1 −
∑L

ℓ=1
w2

ℓ ϕℓ(xi),

żi = µ
(

s(xi − x0) − zi

)

.
(10)

The chosen approximation is the simplest one presented in

[6], which is suitable for analog implementation and where

L = 16.

We recomputed the MSF for this model, with I = 2.5
as in the previous case, and obtained the plot shown with

a dashed line in Fig. 1. It is evident that the limit to achieve

synchronization is again −0.5, approximately.

To validate this statement, we considered two networks of

100 neurons, with the same coupling matrices as in the HR

case. The plots of the time average of the GQE for different

values of gs shown in Fig. 2 (upper and lower panel, dashed

lines) confirm the result. Even if in this case the decrement

of GQE time average is not as evident as in the case of HR

model, its order of magnitude (10−10) is still low enough to

assure complete synchronization.

Figures 3 (two-nearest-neighbors ring coupling) and 4 (all-

to-all coupling) provide further qualitative comparisons be-

tween the HR network (left column) and the PWL net-

work (right column) with 100 neurons in the two considered

topologies. The raster plots show the variable x(t) (coded

by a grey level) for the 100 neurons (with random initial

conditions) in each network: Lighter grey levels correspond

to the presence of spikes. The three rows correspond to three

different coupling strengths: gs = 0 (upper row), gs = 50.67
(middle row), gs = 506.77 (lower row) for the ring coupling

and gs = 0 (upper row), gs = 0.002 (middle row), gs = 0.02
(lower row) for the all-to-all coupling. The vertical patterns

in the third row evidence that, after a transient, both networks

synchronize on a similar state.

V. CONCLUDING REMARKS

We conducted some numerical experiments to validate the

PWL approximation of the HR neuron with respect to the

synchronization properties in some simple networks, focusing

on regular symmetric diffusive couplings. The preliminary

results show that the PWL networks exhibit the same collective

properties as the original HR ones, giving credit to this kind

of approximation in order to simulate large networks. We

are currently working on testing less regular structures of

larger size, different values of the b and I parameters and

on weakening the assumption of having identical systems.
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Figure 3. Raster plots for the 100-neurons two-nearest-neighbors ring
coupling HR (left column) and PWL (right column) networks (see text).
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