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Abstract— The reconstruction of the links among coupled
dynamical systems can be handled in many ways. One of them
is through synchronization, building a system composed by a
“mirror” network and by evolution equations for the links of
interest, in such a way that the two networks will synchronize if
and only if the links are correctly estimated. A procedure based
on this idea to estimate the topology of a network of interacting
objects when the state variables are known is already present in
literature, and here it is extended to systems ruled by implicit
differential equations, to better suit some actual cases arising,
in particular, in electric and electronic systems. The developed
method is applied to a case of practical interest: the test of
connections in a nanoscale device, introduced in the literature
as “quantum dot cellular neural network”, which can be easily
produced in a self-assembled way. The whole iter has some steps
sensitive to errors which can lead to a final device where the
links among the “dots” are different from the desired ones. Our
interest is in applying the method to detect such bad links.

I. INTRODUCTION

A system of interacting agents, like neurons, lasers, people
or computers, can be efficiently modeled by a network having
a node, or cell, for each agent and a link for each connection.
If the agents evolve according to some differential equations,
the whole system evolution is then ruled by a set of coupled
differential equations, where the links of the network account
for the coupling among the agents. The real world provides
lots of examples of complex networks [1], [2]. A great part
of research on complex networks has focused on how the
topological properties of the network influence the dynamics
of the cells and of the whole system [3]–[5]. Another important
issue which is interesting to study is how to infer information
on the topology of the network and the state of the cells from
observations, and how to use it to control the network. Our
work is related to this aspect. In [6], the authors proposed a
technique, based on synchronization, to estimate the topology
of a network of coupled dynamical systems observing the time
evolution of the cells. The method was applied to different
kinds of systems, like neurons [7] and phase oscillators
[8]. One of the basic assumptions of the paper is that the

differential system accounting for the evolution of the cells is
in normal form.

However, some interesting systems, as, for example, net-
works of quantum dots [9]–[12] do not satisfy this assump-
tion. These networks, formed by nanoelectronic components,
possess interesting computational features, in fact they produce
associative memory effects, perform 2D image processing and
solve NP-complete combinatorial optimization problems.

The aim of this work is to extend the technique proposed
in [6] to networks which do not admit a description of the
evolution of the cells with differential systems in normal form.
As a practical example, quantum dot cellular neural networks
are considered [13].

At first, in Section II, the original method is succinctly
described. Then, in Section III, the device taken into con-
sideration as a practical application is introduced, with an
overview of the problem under study. In Section IV our
developments are explained and in Section V are illustrated by
an example. Conclusions (Section VI) and acknowledgement
close the paper.

II. PRELIMINARIES

In this Section, the method proposed in [6] is summarized.
A network composed of n 1D cells is considered, so that the
dynamical evolution on the network is given by:

ẋi = fi(xi) +
∑
j∈V

Aijhj(xj) (1)

where i ∈ V := {1, 2, . . . , n}, xi ∈ R is the state of node i,
fi : R → R describes the evolution of node i when uncoupled
and hj : R → R is the output from node j, which is seen by
node i weighted with the term Aij . The matrix A = {Aij}
has then Aij �= 0 if and only if there is a link between node j
and node i and Aij = 0 otherwise. We assume that the maps
fi and hi are Lipschitzian uniformly in i ∈ V , i.e. there exist
positive constants Lf , Lh such that

|fi(ν) − fi(ξ)| ≤ Lf |ν − ξ|, ∀i ∈ V (2)



and
|hi(ν) − hi(ξ)| ≤ Lh|ν − ξ|, ∀i ∈ V. (3)

Moreover, we assume that the states xi can be experimentally
measured (are observable), for all i ∈ V . The proposed method
uses these observations to find the topology of the network
connections, more precisely to estimate the elements of the
matrix A. The main idea is to consider a new system of n
cells, described by the state variable yi(t), whose evolution
is ruled by equations similar to (1), but with a matrix B(t)
instead of A. This matrix can change in time according
to functions linked to the differences yi − xi. By letting
x = [x1, . . . , xn]T and y = [y1, . . . , yn]T , under some
mild mathematical conditions one can design control signals
ui(x,y), such that the following system can track the topology
of the network:


ẋi = fi(xi) +
∑
j∈V

Aijhj(xj)

ẏi = fi(yi) +
∑
j∈V

Bijhj(yj) + ∆i(y, Bij , t) + ui

Ḃij = −γijhj(yj)(yi − xi),
(4)

where γij are positive constants, ∆i represents some unknown
nonlinear functions (such as disturbances and modeling errors)
and i, j ∈ V . It has been proved in [6] that, as t → +∞ we
have Bij → Aij for all i, j ∈ V . The proof is based on the
Lyapunov function

2Ω(t) =
∑

i

e2
i +

∑
i

∑
j

(1/γij)(Bij − Aij)2, (5)

where ei = yi − xi for each i ∈ V . The time derivative of
Ω(t) is showed to be non-positive and to reach the value zero
only when x = y and A = B.

III. QUANTUM DOT CNN

The quantum dot architecture proposed in [9]–[12] is a
2-D locally interconnected architecture analogous to a cellular
neural network (CNN) [14].

The active elements in the architecture are the “quantum
dots,” which are electrically coupled to their nearest neighbors
and interfaced with a nonohmic substrate (exhibiting a negative
differential resistance). The procedure to build this kind of
devices is described in [9]–[12] and is based on evaporation,
electrodeposition and controlled etching in a self-assembled
fashion.

In Figure 1 the circuit model of the dots and the nonlinear
function representing the interaction between each dot and
the nonohmic substrate are depicted. The circuit model for
the coupling between two neighbors is shown in Figure 2,
and Figure 3 gives a very schematic picture of the network
considered.

Using Kirchhoff’s current law, the evolution of the voltage
vi of the i-th of the n dots can be described by

Csiv̇i = IBi − Jsi +
∑
j �=i

Jij , (6)
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Fig. 1. Equivalent circuit of a dot and nonlinear characteristic of the
nonhomic substrate
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Fig. 2. Equivalent circuit of the coupling between dot i and dot j

where IBi is the bias current for dot i, Csi is the dot-to-
substrate capacitance, Jsi is the current which comes to node
i from the semiconductor wire underlying the dot, and Jij is
the current from dots j to dot i, which can be a linear or a
non linear functions of the difference between dot potentials
(Figure 2).

Assuming a linear capacity-resistance model for the dot-to-
dot coupling, we get this version of (6)

Csi +
n∑

j �=i

Cij


 v̇i = IBi − Jsi+

+
n∑

j �=i

(
Gij(vj − vi) + Cij v̇j

)
,

(7)

where Cij and Gij are, respectively, the capacitance and
conductance between dot i and dot j (Figure 2). The local
connectivity eliminates a lot of the interconnection problem,
but the whole process has some steps sensitive to manufactur-
ing errors, and the scale does not allow an easy checking of
whether a contact between two dots really exists or not. We
are then interested in developing a method which uses the time
evolution of the dot potentials starting from an unknown initial
state in order to obtain information regarding the connections
of the grid. This could be a practical application of the method
developed in [6], but with some caveats.

IV. ESTIMATION WITH SYNCHRONIZATION

In this case we are not dealing with general coupling
functions as in [6], but there is a coupling on the derivative
side too, a fact which creates both theoretical and, especially,
computational difficulties. A naïve approach could consist in
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Fig. 3. Network schematization

inverting the capacity matrix C = {Cij}, in order to have
a normal form system and to be able to apply the method
described in [6]. This solution has some negative aspects, since
it involves a numerically tough operation like the inversion of a
matrix. Moreover, if the matrices C and G = {Gij} are sparse
or have some regular structure to be exploited to simplify
the problem, as in the real case taken into consideration,
after the inversion this is generally not true anymore. We
are then interested in estimating the network of connections
working with implicit differential equations. Following [9]
and the simulations performed therein, we can assume some
restrictions to the general form. We can suppose the matrices
C and G to be both proportional to the same matrix A, so that
C = cA and G = gA. This is strictly related to the physics
of the system: as the capacity-resistance model accounts for
the coupling made by electrodeposition and etching of a
semiconductor and a metal in the self-assembly procedure,
we can reasonably think that if the process went wrong and
some couplings did not exist, then both the resistance part and
the capacity part are missing. By the same reasoning, we can
suppose that the coupling is bidirectional and so we suppose
the matrix A to be symmetric. Moreover, we have Aii = 0
and we suppose the bias current IBi to be constant and the
dot-to-substrate capacitances Csi to be equal for each i. After
normalization on the quantity Csi, the system (7) can then be
rewritten in the form

ẋi +
n∑

j=1

Aij

(
c(ẋi − ẋj) + g(xi − xj)

)− f(xi) = 0 (8)

for each i ∈ V . Here f(xi) accounts for the bias current IBi

and for the current Jsi coming from the substrate. Our task is
to estimate the unknown entries of A.

Referring to (8), we can consider the following system,


ẋi +
n∑

j=1

Aij

[
c(ẋi − ẋj) + g(xi − xj)

]− f(xi) = 0

ẏi +
n∑

j=1

Bij

[
c(ẏi − ẏj) + g(yi − yj)

]− f(yi) − ui = 0

Ḃ�k + ξ�k

[
g(yk − y�) + c(ẏk − ẏ�)

]
(y� − x�) = 0

(9)
where B�k are the estimates of the unknown connections we
want to reconstruct and ui are control functions to be specified.

Note that some practical considerations could suggest that not
all the entries in A are actually unknown, so we have used
different indices �, k, instead of i, j, for the elements of B
which really have to track the connections. In the other cases,
we simply put Bij = Aij and Ḃij = 0. If the function f
is Lipschitz with constant L, then it is possible to choose
control functions ui(x,y) such that the system (9) will track
the topology of the network, or, in other words, B�k → A�k

as t → +∞. To show this, let ei = yi − xi and consider the
function

2Ω(t) =
n∑

i=1

e2
i +

n∑
i=1

n∑
j=1

(Bij − Aij)2

ξij
+

+ c
n∑

i=1

n∑
j=1

Aij
(ei − ej)2

2
.

(10)

It follows that

Ω̇ =
∑

i

eiėi +
∑

i

∑
j

(Bij − Aij)Ḃij

ξij

− c

2

∑
i

∑
j

Aij(ei − ej)(ėj − ėi) =

=
∑

i

ei

(
f(yi) − f(xi) + g

∑
j

Aij(ej − ei) + ui

)
.

(11)

With

k̄ = ||A||1 = max
i∈V



∑

j

|Aij |

 (12)

and taking control functions of the form

ui = −Kei i ∈ V (13)

we have,

Ω̇ =
∑

i

ei

(
f(yi) − f(xi)

)− K
∑

i

e2
i +

+ g
∑

i

ei

∑
j

Aijej − g
∑

i

e2
i

∑
j

Aij ≤

≤
∑

i

|ei|
∣∣f(yi) − f(xi)

∣∣− K
∑

i

e2
i + g

∑
i

∑
j

Aijeiej ≤

≤
∑

i

|ei|L|ei| − K
∑

i

e2
i +

g

2

∑
i

∑
j

Aij(e2
i + e2

j ) ≤

≤ L
∑

i

e2
i − K

∑
i

e2
i +

gk̄

2

∑
i

e2
i +

g

2

∑
j

e2
j

∑
i

Aij ≤

≤ L
∑

i

e2
i − K

∑
i

e2
i +

gk̄

2

∑
i

e2
i +

gk̄

2

∑
j

e2
j ≤

≤ (L − K + k̄g
)∑

i

e2
i .

(14)

We are generally able to give an upper bound to the value k̄,
by some physical considerations. Then, choosing K > L +
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Fig. 4. Time evolution of connection estimates.

k̄g, we have that Ω̇ ≤ 0. This means that the estimate error
exponentially decreases, so

yi(t) → xi(t) ∀i ∈ V (15)

and for all �, k of interest

B�k(t) → A�k, (16)

as long as we can state that
∑n

i=1 e2
i = 0 if and only if Bij =

Aij for all i, j = 1, . . . , n. To obtain this condition, which
actually means that the system x1, . . . , xn has not to converge
too rapidly to an equilibrium point, we have to permanently
excite the system in some way - [15], [16]-, for example by
connecting sinusoidal current generators to some of the dots.
To test the feasibility of this method, a numerical integration of
the system (9) has been performed. The choice of the routine
needs particular attention, as the differential equations to be
integrated are implicit.

V. EXAMPLE

We have simulated a regular grid of 5× 5 dots, with all the
connections equal to 1, i.e correct, except for two. The first
of them is the connection between dot 1 and dot 2, supposed
smaller than the others, A1,2 = 0.1, and the second one, the
connection between dot 16 and dot 21, bigger, A16,21 = 1.7.
Five sinusoidal generators with different phase and amplitude
are used to permanently excite the system, connected to the
four corner dots and to the central one. The evolution of the
estimates of the unknown elements of A is depicted in Figure
4. It is clearly visible that the method recognizes the values of
the right connections and correctly estimates those of the two
wrong ones. Interesting further developments of this method
could be a theoretical and numerical analysis of performances
when only a reduced number of states xi can be observed
and its use for monitoring the evolution of time dependent
connections, for example to detect on-line damages in power
grids [17].

VI. CONCLUSION

In [6], the authors proposed a technique, based on synchro-
nization, to estimate the topology of a network of coupled
dynamical systems observing the time evolution of the cells. In
this work we have extended that method to the case when the
coupling is among the derivatives too and applied the resulting
tool to an actual problem: the estimation of links in a quantum
dot CNN [9]. A numerical simulation has been performed to
test the method. The theory developed can be used for other
cases when there is a coupling among the derivatives of the
state of the cells to be estimated, a situation which often arises
in electrical and electronic applications [17].
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