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Abstract— Synchronization in complex hybrid networks is
studied. Hybrid networks presents the so called “small world”
phenomenon, i.e. small distance between any pair of nodes and
clustering effect, and can be considered as the union of a local
and a global graph, the former providing local connections and
the latter providing small distances. After recalling a few results
stated in previous papers, we prove that although local graph
networks do not synchronize when the number N of nodes
is large, the addition of only a small number of global edges
makes these hybrid networks synchronize. The obtained results
are supported by numerical examples.

I. INTRODUCTION

Real networks of interacting dynamical systems – be they
neurons, power stations or lasers – are complex. Many real-
world networks are small-world [1] and/or scale-free net-
works [2]. The presence of a power-law connectivity distri-
bution, for example, makes the Internet a scale-free network.
The research on complex networks has been focused so far
on the their topological structure [3]. However, most networks
offer support for various dynamical processes. In this paper we
propose to study one aspect of dynamical processes in non-
trivial complex network topologies, namely their synchroniza-
tion behaviors.

The general question of network synchronizability, for many
aspects, is still an open and outstanding research problem [4].
In this context, an important contribution has been given by
Pecora and Carroll in [5], where, for a network of coupled
chaotic oscillators, they derived the so-called Master Stability
Equation (MSE), and introduced the corresponding Master
Stability Function (MSF). Consequently, the stability analysis
of the synchronous manifold for the network under consider-
ation can be decomposed in two sub-problems [5]. The first
sub-problem consists of deriving the MSF for the network
nodes, i.e. to study in which region of the complex plane the
MSE admits a negative largest Lyapunov exponent (LE). The
second sub-problem is to verify whether the eigenvalues of
the so-called connectivity matrix of the network, apart from
the zero-eigenvalue, lie in the synchronization region(s). This
approach is particularly relevant because the MSE depends
only on the nodes local dynamics and on the coupling matrix.

In this work we first recall some results reported in pre-
vious papers [6], [7], namely that for typical systems only
three main scenarios may arise as a function of coupling
strength. Then, we study synchronization properties of hybrid
networks. These networks possess the so-called small-world

phenomenon, shown by many real networks: small distance
between any pair of nodes and clustering effect. Hybrid
networks can be described by a graph that is a (disjoint) union
of a global graph, consisting of “long edges” providing small
distances, and a local graph, consisting of “short edges”, which
provide local connections. We prove that although local graph
networks do not synchronize when the number N of nodes
is large, the addition of only a small number of global edges
makes these hybrid networks synchronize. The obtained results
are supported by numerical examples. Finally, we close our
paper with conclusions.

II. PRELIMINARIES

A. Network equations

Let us consider a network with N identical nodes, each
being a (chaotic) oscillator. Let xi be the m-dimensional
vector of dynamical variables for the i-th node. Let us as-
sume diffusive coupling. Then, the dynamics of each node is
described by:

ẋi = f(xi) + σ
N∑

k=1

Dikxk i = 1, . . . , N (1)

where f : IRm → IRm describes the oscillator equations,
which we assume to admit a chaotic attractor, σ is the overall
strength of coupling, while Dik are m × m real matrixes.
Assume that each matrix Dik has the form: Dik = likH ,
where lik is a real number defined in the following and
H is a m × m diagonal matrix, same for all nodes, called
coupling matrix. The coupling matrix H = (hij) contains
the information about which variables are utilized in the
coupling and is defined as hii = 1, if the i-th component
is coupled, and hii = 0, otherwise. Let x = (x1, . . . ,xN )T ,
f(x) = (f(x1), . . . ,f(xN ))T . Furthermore, let the N × N
matrix L = (lij) be the Laplacian matrix, representing the
connection topology of the network: lij = lji = −1 if nodes
i and j are connected, lii = ki if node i is connected to ki

other nodes, and lij = lji = 0 otherwise.
Then, we can rewrite Eq. (1) in a more compact form using

the direct product of matrixes:

ẋ = F(x) + σ (L ⊗ H) x, (2)

where F(x) : IRmN → IRmN is defined as
F(x) = (f(x1), . . . ,f(xN ))T .
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B. Master stability equation and master stability function

The matrix L, which will be our main concern, is positive
semi-definite, symmetric and has a null eigenvalue in the case
of fully connected graphs. Let us denote by γ1 = 0 < γ2 ≤
. . . ≤ γN the eigenvalues of L. In particular, γ2 and γN are,
respectively, the second and the last eigenvalues of L.

Since L is symmetric, the master stability function, in this
case, has the form [5]

ζ̇ = [Jf + α H] ζ, (3)

where α ∈ IR and Jf is the Jacobian matrix of f(x).
Therefore, in this case the corresponding largest Lyapunov
exponent or MSF, Λ(α), depends only on one parameter, α.
The master stability function determines the linear stability of
the synchronized state; in particular, the synchronized state
is stable if all the eigenvalues of the matrix L are in the
synchronization region S ⊆ IR where Λ(α) < 0.

C. Synchronization regions

Discussions in [7] show that for the system (2) the synchro-
nization region S may have one of the following forms:

• S1 = ∅
• S2 = (αm,+∞)
• S3 =

⋃
j(α

(j)
m , α

(j)
M )

Examples of the these scenarios are given in [6], [7], [8]. In
the majority of cases αm, α

(j)
m , and α

(j)
M turn out be positive

and, furthermore, in the case S3 there is only one parameter
interval (α(j)

m , α
(j)
M ) on which Λ(α) < 0. For this reason, we

will limit ourself to consider only such cases, focusing, in the
remaining of this paper, on the scenarios S2 = (αm,+∞) and
S3 = (αm, αM ). It is easy to see that for S2 the condition
of stable synchronous state is σγ2 > αm. For S3, one can
easily show that there is a value of the coupling strength σ for
which the synchronization state is linearly stable, if and only
if γN/γ2 < αM/αm. Therefore, for a large class of (chaotic)
oscillators there exist two classes of networks:

1. Class-A networks: networks whose synchronization re-
gion is of type S2, for which the condition of stable
synchronous state is σγ2 > a;

2. Class-B networks: networks whose synchronization re-
gion is of type S3, for which this condition reads
γN/γ2 < b;

where a = αm and b = αM/αm are constants that depend on
f , the synchronous state x1 = x2 = . . . = xN and the matrix
H , but not on the Laplacian matrix L. For typical oscillators
b > 1.

D. Classical random networks

The primary model for the classical random graphs is the
Erdös-Rényi model [9], in which each edge is independently
chosen with probability q for some given 0 < q < 1. In what
follows we will denote a classical random graph on N vertices
by G(N, q).

E. Random power-law networks

We consider a random model introduced recently by Chung
and Lu [10], [11], which produces graphs with a given
expected degree sequence w. Therefore, this model does not
produce a graph with exact given degree sequence, as in
the case of the configuration models [12]-[14] or evolution
models [2].

Let us denote with w = (w1, w2, . . . , wN ) the expected
degree sequence, where wi is the degree assigned to vertex vi.
The edges are chosen independently and randomly according
to the vertex degrees as follows. The probability pij that there
is an edge between vi and vj is proportional to the product
wiwj where i and j are not required to be distinct. There are
possible loops at vi with probability proportional to w2

i , i.e.

pij =
wiwj∑

k wk
= ρwiwj (4)

with maxi w2
i <

∑
k wk so that pij ≤ 1 for all i and j.

May be interesting to note that a classical random graph
G(N, q) (see Subsection II-D) on N vertices and edge density
q is just a random graph with uniform expected degree
sequence (qN, qN, . . . , qN).

In this paper we will denote the Chung-Lu model of power-
law random graph as M(N,β, d,m), where N is the number
of vertices, β > 2 is the power of the power law describing the
degree sequence, d is the expected average degree, defined as
d =

∑
wi/N , and m is the expected maximum degree, such

that m2 = o(Nd).

III. SYNCHRONIZATION IN HYBRID NETWORKS

It has been observed that many realistic networks possess
the so-called small world phenomenon, with two distinguish-
ing properties: small distance between any pair of nodes, and
the clustering effect, i.e. two nodes are more likely to be
adjacent if they share a neighbor. In this Section, we consider
a hybrid graph model proposed by Chung and Lu [15], which
has both aspects of the small world phenomenon. Roughly
speaking, a hybrid graph is a union of a global graph GG

(consisting of “long edges” providing small distances) and a
local graph GL (consisting of “short edges” respecting local
connections).

A. Local graphs

We will consider the local graph to be a grid graph, defined
as in [16], with an even maximum vertex degree ∆ = 2d,
and with a diameter D, function of the number of vertices N
on the order of O( d

√
N). Note that paths and cycles turn out

to be particular cases of a grid.
Theorem 3.1: When N → ∞ local (grid) graphs for both

class-A and class-B networks do not synchronize.
Proof: It is know that, see for example [16], in the case

of a grid

γ2 <
2d ln(N − 1)

2(D − 2) − ln(N − 1)
,

if 2(D − 2) − ln(N − 1) > 0. Therefore, γ2 → 0 as N → ∞
for the grid graphs. On the other hand, 2d = ∆(G) ≤ γN ≤
2∆(G) = 4d. Therefore, γN/γ2 → ∞ as N → ∞.
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B. Global graphs

For the global graph GG, we consider two cases: classical
random graph model G(N, q), described in Subsection II-D,
and power-law random graph model M(N,β, d,m), described
in Subsection II-E.

For any two vertices vi and vj , the probability of choosing
an edge vivj between vi and vj is denoted by p(vi, vj), defined
as follows:

• p(vi, vj) = 1 if vivj is an edge of GL;
• p(vi, vj) = q for a classical random graph;
• p(vi, vj) = ρwiwj for a power-law random graph.

C. Hybrid network

Let now consider a hybrid network for which equation of
the motion can be written as:

ẋ = F(x) + σ [(LL + LG) ⊗ H] x, (5)

where LL and LG are the matrixes describing respectively
the local graph GL and the global graph GG. Let Ntotal =
N(N−1)/2 be the possible total number of edges in a network
with N nodes and NL be the total number of local edges. Then
NG = Ntotal−NL is the number of all possible global edges.
Let pNG, where 0 ≤ p ≤ 1, be a number of global edges.

Theorem 3.2: Assume N is large enough and let GG be
a global graph (classical random graph model or power-law
model). Then for class-A networks, given a, there exist a
number p, such that σc(p) 	 σc(0), where σc(p) = a/γ2(p),
σc(0) = a/γ2(0), γ2(p) is the second eigenvalue of the matrix
LL + LG, and γ2(0) is the second eigenvalue of the matrix
LL. For class-B networks, given b > 1, there exist a number
p, such that γN (p)/γ2(p) < b, where γ2(p) and γN (p) are the
second and the N -th eigenvalue, respectively, of the matrix
LL + LG.

Proof: Since for p = 1 the matrix LL + LG is fully
connected, it follows that γi(1) = N , i ≥ 2; hence γ2(1) = N
and γN (1)/γ2(1) = 1. On the other hand, on average, γ2(p) is
a monotonically increasing function of p and γN (p)/γ2(p) is
a monotonically decreasing function of p [17]. Thus, for both
classes of networks (class-A and class-B), there exists a critical
value of p, pc, such that for p > pc, almost all networks (5)
are synchronizable.

D. Examples

We now present an example. Let the local graph GL be a
circle and N = 1200. It is easy to compute that γ2(0) =
8.3513 × 10−9 and γN (0)/γ2(0) = 1436156.321. Now let us
consider two different cases.

(i) Assume that the global graph GG is a classical random
graph model. Consider first class–A oscillators for which
a = 1 and σ ≤ 10. Since σγ2 	 1, the local network
GL of 1200 oscillators does not synchronize. Consider now
the hybrid graph GL

⋃GG. The dependence of γ2(p) on p
is shown in Figure 1(a). It follows that the hybrid graph
synchronizes if γ2(p) > a/σ = 0.1. From the magnified inset
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Fig. 1. γ2 (a) and γN/γ2 (b) versus p for the hybrid model with N = 1200.
The local graph is a circle and the global graph is a classical random graph.

in Fig. 1(a) we get γ2(p) > 0.1 already for p = 33.30 · 10−4.
We consider now a network of class–B oscillators for which
b = 40. Since γN (0)/γ2(0) � 40, the local network GL does
not synchronize. Now let us consider the hybrid graph. The
dependence of γN (p)/γ2(p) on p is shown in Fig. 1(b). Since
the condition for synchronization is γN/γ2 < b, it follows that
the hybrid graph synchronizes for p = 15.78 ·10−4. Again this
value can be approximately read from the magnified inset in
Fig. 1(b). Therefore, adding only a small number of global
edges makes the oscillators synchronize.

(ii) Assume now that the global graph GG is a random
power-law graph. Numerically we consider the graph gener-
ated in the following way. First, we choose c nodes at random
from all N nodes with equal probabilities and assign them to
be centers. Second, we add global edges by connecting one
node chosen at random from all N nodes to another node
randomly chosen from the c centers. Third, when all centers
are fully connected with other nodes, we start uniformly to
add links between the rest of the nodes. The dependence of
γ2(p), γN (p), and γN (p)/γ2(p) on p for such model is shown
in Figure 2, for c = 5. From this figure and several numerical
experiments, not reported here for lack of space, we may
conclude:
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Fig. 2. γ2 (a), γN (b), and γN/γ2 (c) versus p for the hybrid model with
N = 1200 and c = 5. The local graph is a circle and the global graph is a
power-law graph.

(a) γN (p) reaches the maximum value N for smaller value
of c; thus, γN reaches the value N in the fastest way for
c = 1;

(b) γ2 is not affected by c.
Therefore, the random model with c centers only influences
synchronization property of class–B networks: if one adds
global edges using the model with centers, the network is more
difficult to synchronize.

Thus, for example, from Fig. 2(c) it turns out that a class–B
network with b = 40 will synchronize for p = 26.70 · 10−3.
This value is higher than the value 15.78 · 10−4 obtained in
the case (i) previously considered. Saying in another way, if
the global edges are added independently (i.e. c = 0), then the
synchronization is optimal.

IV. CONCLUSION

In this paper we studied synchronization in hybrid networks.
First we recalled some results published elsewhere. Namely,
for a large class of oscillators two classes of networks exist,
for which the condition for stable synchronous state can be
explicitly given in terms of the coupling strength σ, of the
second and of the last eigenvalues of the Laplacian matrix L
of the graph describing the topology of the network, and of
constants that depend on local dynamics, synchronous state
and the coupling matrix, but not on L.

Then we considered hybrid networks, i.e. networks de-
scribed by a graph that can be considered the union of a
local graph and a global graph. We proved that although local
graph networks do not synchronize when the number N of
nodes is large, the addition of only a small number of global
edges makes these hybrid networks synchronize. The obtained
results were supported by numerical examples.
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[9] P. Erdös and A. Rényi, “On random graphs,” Publ. Math Debrecen,
vol. 6, pp. 290 – 291, 1959.

[10] W. Aiello, F. Chung and L. Lu, “A random graph model for massive
graphs,” Proceedings of the Thirty–Second Annual ACM Symposium
on Theory of Computing, pp. 171 – 180, 2000.

[11] F. Chung and L. Lu, “Connected Components in Random Graphs with
Given Expected Degree Sequences,” Annals of Combinatorics, vol. 6,
pp. 125 – 145, 2001.

[12] E. A. Bender and E. R. Canfield, “The Asymptotic Number of Labelled
Graphs with Given Degree Sequences,” J. Combinat. Theory (A), vol. 24,
pp. 296 – 307, 1978.

[13] B. Bollobás, Random Graphs, Cambridge University Press, 2nd edition,
Cambridge, 2001.

[14] M. Molloy and B. Reed, “The Size of the Giant Component of a Random
Graph with a Given Degree Sequence,” Combin. Probab. Comput.,
vol. 7, no. 3, pp. 295 – 305, 1998.

[15] F. Chung and L. Lu, “The small world phenomenon in hybrid power
law graphs,” in Complex Networks, E. Ben–Naim, H. Frauenfelder, and
Z. Toroczkai, Eds., Springer–Verlag, pp. 91 – 106, 2004.

[16] C. W. Wu, “Synchronization in Arrays of Coupled Nonlinear Systems:
Passivity, Circle Criterion, and Observer Design,” IEEE Trans. Circuits
Syst. I, vol. 48, pp. 1257 – 1261, 2001.

[17] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math. J., vol. 23,
no. 98, pp. 298 – 305, 1973.

1672


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

