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ABSTRACT

Cellular neural networks are dynamical systems, described
by a large set of coupled nonlinear differential equations.
The equilibrium point analysis is an important step for un-
derstanding the global dynamics and for providing design
rules. We yield a set of sufficient conditions for the exis-
tence of at least one stable equilibrium point. Such condi-
tions give rise to simple constraints, that extend the class of
CNN, for which the existence of a stable equilibrium point
is rigorously proved. In addition, they are suitable for de-
sign and easy to check, because they are directly expressed
in term of the template elements.

1. INTRODUCTION

Cellular neural networks (CNNs) are analog dynamic pro-
cessors, that have found several applications for the solu-
tion of complex computational problems [1, 2]. A CNN
can be described as an array of identical nonlinear dynam-
ical systems (called cells), that are locally interconnected.
In most applications the connections are specified through
space-invariant templates.

CNNs are modeled by large systems of coupled non-
linear differential equations, that have been mainly studied
through extensive computer simulations. As far as the dy-
namic behavior is concerned, CNNs can be divided in two
main classes: stable CNNs, with the property that each tra-
jectory (with the exception of a set of measure zero) con-
verges towards an equilibrium point; unstable CNNs, that
exhibit at least one attractor, that is not a stable equilibrium
point. Due to the complex CNN mathematical model, so far
a complete characterization of the two classes above is not
available [3].

A preliminary step for investigating CNN dynamics is
the equilibrium point analysis: in fact the existence of at
least one stable equilibrium point is a necessary condition
for the CNN stability, whereas the absence of stable equi-
libria is a sufficient condition for instability. CNN equilib-
rium points have been studied in several papers, that have
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provided important conditions, concerning the existence of
stable equilibrium points [4, 5]. Most of these contributions,
however, also apply to general networks and do not really
exploit the two main characteristics of a CNN, i.e. the local
connectivity and the space-invariance structure.

In this paper we provide a set of sufficient conditions,
ensuring the existence of at least one stable equilibrium point.
Such conditions are different from those reported in the lit-
erature and extend the class of CNNs for which the ex-
istence of a stable equilibrium point is rigorously proved.
In addition they are expressed in term of the template ele-
ments: hence they are very easy to check and to exploit for
CNN design.

2. SPACE-INVARIANT CNNS

We consider CNNs composed by N x M cells arranged
on a regular grid. We denote the position of a cell with two
indexes (k, ) with the assumption that cell (1, 1) is located
in the upper left comer and cell (V, M) is located in the
lower right corner. The network dynamics is governed by
the following normalized state equations

= gLt Z

[nl<r,|m|<r

Ty = Anm Yk+n,l4+m

+ Z Bnm Uk4n,l+m T I (1)

[n|<rlm|<r

where zj; and uy; represent the state-voltage and the in-
put voltage of cell (k,1); yx: is the output voltage, defined
through the following piecewise linear expression:

v = flaw) = 3 (au+ 1l - law=1) @

Finally r denotes the neighborhood of interaction of each
cell; A and B are linear templates, that are assumed to be
space-invariant and I is the bias term. The description of the
structure is completed by the specification of the boundary
conditions, that we assume to be null.
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Py1am — COnw | Punm (1 #1,M) — O~ | PiMnm — CnNE

Piinm (k#1,N) — Cw

Pkl’nm(k7é1,N;l9él,M) s Co

Pirtam (k#1,N) — Cg

PNl,nm - Csw PNl,nm #1,M)

PNM,n'rn — Csg

Table 2. Set of conditions £

3. EQUILIBRIUM POINTS

For the sake of simplicity, we assume that the input and
the bias terms are null; however we remark that the results
presented in the paper also applies, with slight modifica-
tions, to the case of constant inputs and non-zero boundary
conditions. In the following, with the term saturation re-
gion we indicate a linear region of the state space where all
the output voltages yy; are saturated (i.e. V k, I: |ygi] > 1).
A saturation region will be denoted by a matrix, containing
as entries the output voltage values. We also assume that
the template A is represented by a 3 x 3 matrix (as required
in most applications) and that its central element is greater
than one (i.e. Agg > 1), to ensure that the stable equilibrium
points are located in saturation regions [1]. We have:

Ao1,-1 Ao Ao
Ao-1 A Ao (3)
A1 A An

Under the above assumptions, the N x M cell CNN
turns out to be described by the following state equations:

Z Anm Yk+n,l+m (4)

In|<7,imi<r

A=

Tpt = — T+

The results presented in the paper are based on four
propositions, that for lack of space are reported without proof.
Proposition 1: Let S = {y, (1 < k<N, 1<
I < M)} be a saturation region. Let us consider the space-
variant CNN (SVCNN), associated to (4) with respect to the
saturation region S, and described by the following equa-
tions:

Z Pkl,nm. Zk+4n,l+m (5)

|nlSTy|'m|S7‘

W = — wi +

where zi; = f(wyi1), according to (2), and Py o, is a feed-
back space-variant template, defined as:

Pkt,nm = Ykl Anm Yk+n,l+m (6)

A sufficient and necessary condition in order that the CNN
(4) presents an equilibrium point in the saturation region S
is that the SVCNN (5) exhibits an equilibrium point in the
saturation region S’ = {2x1: (V k,1, 25t = 1)}.

We denote with C the set of 9 conditions, regarding the 3 x 3
A template (3), that are reported in Table 1.

Proposition 2: A SVCNN described by the state equa-
tion (5) presents an equilibrium point in the saturation re-
gion 8’ = {zx;: V k,l, zx = 1} if and only if the space-
variant template (6) fulfills the set of constraints £, defined
in Table 2.

Proposition 3: A space-invariant CNN, described by equa-
tion (4) and template (3), exhibits at least one stable equilib-
rium point, if and only if there exists a saturation region S,
such that the corresponding SVCNN (described by (5) and
(6)) satisfies the set of constraints £ defined in Table 2.

The necessity part of the above condition is complex to
verify, because it would require to examine all the possible
saturation regions. We will concentrate on the sufficient part
of the condition and restrict our attention to the saturation
regions S, whose output can be written as yx; = ARy, with
Rk, h? € {~1,1}. The space variant template (6) admits
of the following expression:

Pitnm = hghy Anm hiyr l+m )

The above transformation can be seen as the result of the
applications of two operators, that act on the column and on
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[V (4)]

- C'NW

Vi, RV (A)]

— Cy | H[V7(4)] — CnNE

Vi, HV(A)] — Cw

Vi,j, H(A)] — Co

Vi, H'[V'(4)] — Cg

He[V(A)] —  Csw

Vi, VO (A))]

— Cs | H[V¥(4)] — Csg

Table 3. Conditions for the existence of a stable equilibrium point, according to Proposition 4.

the row respectively of the template A. These two opera-
tors, called horizonta! and vertical, will be denoted with H*
and V* respectively. They are defined as follows:

[pf Aoy, Asip g A
HEA] = | p} Ao-1 Ago a Ao

| P} A1 Ao a An

[(p} A1 P} Ao Py A-1ga
VIA] = Ao, -1 Ago Ao

| @ A1 q Ao g An

@®)
where p}! = h}_,h}, gt = hRh}, ., p¥ = hY_ A}, and
qf = hihiyy.

By use of (7) and (8) one obtains:
Py = V{H*[A]} = H*{(V'[A]} ©)

Due to the fact that A, hY € {—1, 1} and hence p}, p¥,
gk, ¢¢ € {—1,1} only four different forms are admissible
for the operators H* and V. For the sake of the simplicity,
such forms are denoted by removing from H* and V' the
apexes k and [ and by adding two indexes, corresponding to
the values of p;c‘, q,’: and p}, qj respectively. As an example,
the expressions of H_;,; and V; _; are:

—A_11 Ao A
H-11[A] = —Ao-1 Ao Ao
| —A41,-1 A An
(10)
[ A1 Ao Alig
V1,-1[4] = Ao,—1 A Ao
| —41,-1 —Aw —-4n

Owing to (8) it is derived that two consecutive operators
HE = Hyp and HFH! = Hoq must satisfy the constraint
b = c¢. According to this rule, the possible sequences of
horizontal operators are defined through a suitable oriented
graph, that contains H as nodes and such that H,, — Hcqg
iff b = c. The same property holds for the operators V. In
order to give a compact characterization of such sequences
we will introduce the following definition.

Definition : given an oriented graph, containing n nodes,

ai, ...an, such thata; — a; — a3 — ... —» ap-1 —

an, — a, the corresponding circular sequence is denoted
by C(a1, az, ... as).

Owing to the above definition, it is easily derived that
a circular sequence is not altered if the argument is shifted,
ie. C(al, as, ...an) = C(ai, Aiy1, .- Qpn,y A1, A2, ...ai_l).
With the notation [C(a1, az, ... an)]? we denote the sequence
obtained by iterating p times the circular sequence C(a1, az,
... @y,); if p = O this denotes the null sequence.

The set of all the admissible circular sequences for the
horizontal and vertical operators can be expressed as:

H = C([Ho1a]™, Maal?, [Ha—a)™, (H-1,-1]%)
Vo= C([V-12]", V1a)?, V)™, [V-1,41]9) {an

with(m =0, ¢g=0, p>0)or(m=0,p=0, ¢>0)or
(m=1,p>0,¢>0).

The following proposition holds:

Proposition 4 : Let C(H!, H?, ... H?) and C(V?, V2,
... V?) be two admissible circular sequences of horizontal
and vertical operators, respectively. Let a CNN be described
by the template A. If there exist s, ,t, and u such that the
set of conditions reported in Table 3 are satisfied, then there
exist NV and M such that the CNN exhibits at least one stable
equilibrium point.

The application of Proposition 4 to the admissible circu-
lar sequences shown in (11) allows to distinguish 6 possible
classes of sequences for both the H and the V operators.
They are reported in the upper part of Table 4 and denoted
with Sy; and Sy;. Each one of the six Sg; sequences gives
rise to a set of possible values for the parameters I, L and
K. Table 4 shows that the total number of possible choices
for the parameters I, L are 40; then each choice corresponds
to one or more values of K. By considering that some cases
are incorporated into others, the actual number can be re-
duced to 16. The same consideration is valid for the six Sy/;
sequences, with respect to the parameters J, M and G.

Hence Proposition 4 yields the following procedure: I)
for each one of the possible 16 x 16 = 256 sets of param-
eters I, L, and J, M derived from the upper part of Table 4,
check the constraints reported in the lower part of Table 4,
for all the prescribed values of K and G; II) if such con-
straints are verified for at least one of the 256 considered
cases, then the CNN exhibits a stable equilibrium point. We
remark that the above procedure simply requires to check
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Case Sequence Conditions
SH1|(m=0,p>0, ¢=0) — C([H11]?) I,L,K = (1,1)
Sg2{(m=0,p=0, qg>0) — C(['H-ly_llp) I,.L,K = (-1,—1)
SH3|(m=1,p=0,¢=0) - C(H-1,1, Ha,-1) IL = (-1,1) or (1,-1)
K = (=1,1) and (1,-1)
SHa|(m=1,p>0, g=0) — C(H-1,1,[H1,1]?,H1,-1) I,L = (1,-1) or (-1,1) or (1,1)
K = (1,-1) and (-1,1) and (1,1)
Sgsl(m=1,p=0, ¢>0) — C(H-1,,H1,-1,[H-1,-1]) I, L = (1,-1) or (-1,1) or (-1,-1)
K = (,-1) and (-1,1) and (~1,~1)
Sue|(m=1,p>0,¢>0) — C(H-1,1,[H1,1)?, H1,-1,[H-1,-1]9)|I, L = (1,-1) or (-1,1) or (1,1) or (-1,-1)
K = (1,-1) and (-1,1) and (—1,~1) and (~1,-1)
Sy1|(m=0,p>0, ¢=0) — C([V11]?) I M,G = (1,1)
SV2 (m=0! p=0, q>0) - c([v—l,—llp) J!M)G = (_11_1)
Sv3[(m=1,p=0,¢=0) — C(V-1,1, H1,-1) LM = (-1,1) or (1,-1)
G = (-1,1) and (1,-1)
Sval(m=1,p>0,¢=0) = C(V-1,1,[V1,1]?,V1,-1) M = (1,-1) or (-1,1) or (1,1)
G = (1,-1) and (-1,1) and (1,1)
Sys|(m=1,p=0, g>0) — C(V-l,l,vl,_],,[v_l,_l]q) J M = (1,—1) or (—1,1) or (—1,-1)
G = (1,-1) and (=1,1) and (~1,-1)
Sve|{(m=1,p>0,¢>0) - C(V_1,1,V1,1]P, V1,-1,(V-1,-1]7) |/ M = (1,-1) or (—1,1) or (1,1) or (~1,-1)
G = (1,-1) and (~1,1) and (~1,-1) and (~1,-1)
HVi(A)) - Cnw Hk[Vi(A)] - Cn HL[V,(A)] - CnE
Hi[Ve(A)) - Cw Hi[Ve(A)] — Co Hr[Ve(4)] — Cg
H][VM(A)] — Csw 'HK[VM(A)] — Cs HL[VM(A)] - Cse

Table 4. Conditions for the application of Proposition 4 to the admissible H and V sequences.

some sets of inequalities, expressed in term of the template
elements; hence it exploits both the local connectivity and
the CNN space-invariant structure. We have also verified,
by comparison with [4, 5], that the procedure allows to ex-
tend ‘the class of CNNs for which a rigorous proof of the
existence of a stable equilibrium point is available.

4. CONCLUSION

We have investigated the properties of stable equilibrium
points in space-invariant CNNs. We have yielded a set of
sufficient conditions for the existence of at least one stable
equilibrium point. Such conditions presents two main char-
acteristics: a) they exploit both the CNN local connectivity
and the space-invariance structure and hence they are di-
rectly expressed in terms of the template elements; b) they

are different from the results reported in the literature [4, 5]
and allow to extend the class of CNN, for which the exis-
tence of a stable equilibrium point is rigorously proved.
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