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ABSTRACT

The occurrence of complex dynamic behavior (i.e bifurca-
tion processes, strange and chaotic attractors) in autonomous
space-invariant cellular neural networks (CNNs) is investi-
gated. Firstly some sufficient conditions for the instability
of CNNs are provided; then some classes of unstable tem-
plate are identified. Finally it is shown that unstable CNNs
often exhibit complex dynamics and for a case study the
most significant bifurcation processes are described. It is
worth noting that most CNN implementations exploit space-
invariant templates and so far no example of complex dy-
namics has been shown in autonomous space-invariant CNNs.

1. INTRODUCTION

Cellular neural networks (CNNs) are analog dynamic pro-
cessors, that have found several applications for the solu-
tion of complex computational problems [1, 2, 3]. A CNN
can be described as an array of identical nonlinear dynam-
ical systems (called cells), that are locally interconnected.
In most applications the connections are specified through
space-invariant templates.

The mathematical model of a CNN consists in a large set
of coupled nonlinear differential equations, that, apart from
small networks, have been mainly studied through extensive
computer simulations.

CNN stability was widely investigated and several suf-
ficient conditions for their stability (i.e the convergence of
each trajectory towards an equilibrium point) were presented:
they are reviewed and summarized in [4].

For what concerns unstable CNNs (i.e. CNNs which
exhibit at least one attractor that is not a stable equilibrium
point) several examples were shown of CNNs presenting
limit cycles [5, 6]. The main properties and characteristics
of such limit cycles were studied in a quite effective way
through the introduction of space-time spectral techniques
[7, 8].

Complex dynamics in CNNs (i.e. networks presenting
non-periodic, possibly strange, attractors) have been so far
observed in four cases: a) non-autonomous networks com-
posed of two cells [9]; b) autonomous CNNs described by

space-variant templates and composed of three cells [10]; c)
state-controlled CNNs, with space-variant connections [11];
d) delayed CNNs [12]. To the authors’ knowledge, no ex-
ample of complex dynamics has been shown in autonomous
CNNs described by space invariant templates.

The importance of investigating the complex dynamic
behavior of autonomous space-invariant CNNs relies on the
fact that VLSI implementations exploit an autonomous space-
invariant model. Hence the identification of chaotic dynam-
ics in such networks might open the possibility of devel-
oping, on the existing CNN chips, innovative chaos-based
applications.

In this paper we firstly yield some sufficient conditions,
ensuring that a space-invariant CNN be unstable: such con-
ditions present the advantage of being checked by simply
looking at the template elements. Then we verify that, for
the unstable templates, besides the occurrence of limit cy-
cles, it is quite common to observe bifurcation phenomena,
leading to strange and chaotic attractors. Finally we choose
a case study and we investigate the most significant bifurca-
tion processes.

2. SPACE-INVARIANT CNNS

We consider autonomous CNNs composed by N �M cells
arranged on a regular grid and denote the position of a cell
with two indexes (k; l). We assume that the CNN is de-
scribed by the original model introduced in [1], whose dy-
namics turns out to be very similar to that of the model
adopted for VLSI implementations (see [3]).

The network dynamics is governed by the following nor-
malized state equations

_xkl = � xkl +
X

jnj�r;jmj�r

Anm yk+n;l+m

+
X

jnj�r;jmj�r

Bnm uk+n;l+m + Ikl (1)

where xkl and ukl represent the state voltage and the con-
stant input voltage of cell (k; l); ykl is the output voltage,
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Figure 1: Period-I limit cycle in a CNN composed by 9 cells
and described by the template (4) with b = 1:6 and a =
0:66.

defined through the following piecewise linear expression:

ykl = f(xkl) =
1

2
(jxkl + 1j � jxkl � 1j) (2)

Finally r denotes the neighborhood of interaction of each
cell; A and B are linear templates, that are assumed to be
space-invariant and Ikl is the constant bias term.

The description of the structure is completed by the spec-
ification of the boundary conditions, that we assume to be
null. For the sake of simplicity, we also assume that the
input and the bias terms are null; however we remark that
the results presented in the paper also applies, with slight
modifications, to the case of constant inputs and non-zero
boundary conditions.

3. CNN INSTABILITY AND COMPLEX DYNAMICS

In most CNN applications the input image is loaded either
as the initial state x0 or as a constant input u. The output
image is obtained through the time evolution of the network
and is extracted from the output voltage y. In order to en-
sure a proper working of the network it is needed that the
CNN be either completely stable (i.e. convergent, accord-
ing to [13]) or stable almost everywhere (i.e. stable with the
exception of a set of initial conditions of measure zero). A
rigorous definition of the complete stability and stability al-
most everywhere is reported below:
De�nition 1 : a CNN, described by the state equation (1)
is said to be completely stable or convergent if for each
initial condition, the corresponding trajectory converges to-
wards an equilibrium point.
De�nition 2 : a CNN, described by the state equation (1)
is said to be stable almost everywhere if for each initial con-
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Figure 2: Period-II limit cycle in a CNN composed by 9
cells and described by the template (4) with b = 1:6 and
a = 0:74.

dition (with the exception of a set of measure zero), the
corresponding trajectory converges towards an equilibrium
point.

From a theoretical point of view the difference between
the above two kinds of stability is that a CNN stable al-
most everywhere may present unstable invariant sets, that
are not equilibrium points (like for example unstable limit
cycles); on the other hand, the only invariant sets of conver-
gent CNNs are either stable or unstable equilibrium points.
Such differences, however, cannot be appreciated and ob-
served in real circuits, implementing CNNs. This justifies
the introduction of the following definitions:
De�nition 3 : a CNN is said to be stable if it is either
convergent or stable almost everywhere.
De�nition 4 : a CNN is said to be unstable if it not stable.

According to the above Def. 4, an unstable CNN should
present at least one attractor (i.e. a stable invariant set) that
is not an equilibrium point. Note that this does not prevent
that some attractors still be equilibrium points (see for ex-
ample the two-cell CNN introduced in [14], that exhibits the
coexistence of two stable equilibrium points and one stable
limit cycle and that, according to Def. 4 is classified to be
unstable). As a consequence of Def. 4, the following propo-
sition holds:
Proposition 5 : a sufficient condition for the instability,
is that a CNN does not possess stable equilibrium points.

Since the purpose of this manuscript is to investigate the
complex dynamics in space-invariant CNNs and complex
dynamics can only occur in unstable CNNs, we proceed as
follows: 1) we yield some sufficient conditions for CNN in-
stability, ensuring that according to proposition 5 the CNN
does not admits stable equilibria; 2) we identify the class
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of templates satisfying the instability conditions and show
that complex behavior can be observed in a wide range of
the parameter values; 3) for a case study we investigate in
detail the bifurcation processes leading to chaotic attractors.

When considering one-dimensional CNNs, it is possible
to prove the following theorem.
Theorem 6 : A one-dimensional CNN with N cells, de-
scribed by a three element template of type A = [A�1; A0;

A1] has at least one stable equilibrium point if and only if
the CNN, composed of only two cells and with the same
template, has at least one stable equilibrium point.

As a consequence, for a CNN composed of an arbitrary
number of cells, the set of template element values, ensur-
ing the absence of stable equilibrium points, can be easily
determined by studying the very simple case of a two-cell
CNN. The following result is obtained:
Theorem 7 : A one-dimensional CNN with N cells, de-
scribed by a three element template of type A = [A�1; A0;

A1] has at least one stable equilibrium point if and only if
one of the following two conditions is verified: a)A1A�1 >

0; b) A0 � 1 > min(jA�1j; jA1j).
As far as the N �M case is concerned, the following

theorem holds.
Theorem 8 : A two-dimensional CNN composed by N �

M cells, and described by a 3� 3 space-invariant template

A =

2
4

A�1;�1 A�1;0 A�1;1
A0;�1 A00 A01

A1;�1 A10 A11

3
5 (3)

has at least one stable equilibrium point if and only if the
CNN, composed by only 2� 2 cells and with the same tem-
plate, has at least one stable equilibrium point.

Also in this case, the investigation of a simple 2 � 2
CNN, composed by only two cells, allows to establish con-
ditions for the instability of an arbitrary large CNN. The
following result holds:
Theorem 9 : A two-dimensional CNN with N �M cells,
described by a 3 � 3 template A admits of at least one sta-
ble equilibrium point if and only if there exist p1; p2; p3 2
f�1; 1g such that the following set of inequalities is satis-
fied:

A00 � 1 +A01 p1 +A10 p2 +A11 p3 > 0

A00 � 1 +A0;�1 p1 +A1;�1 p1p2 +A10 p1p3 > 0

A00 � 1 +A�1;0 p2 +A�1;1 p1p2 +A01 p2p3 > 0

A00 � 1 +A�1;0 p1p3 +A�1;�1 p3 +A0;�1 p2p3 > 0

The time-domain simulation have shown that for most
of the unstable templates satisfying either Theorem 7 or
9, the most common behavior is chaotic, even in networks
composed by a limited number of cells.

2200 2400 2600 2800 3000
−4

−3

−2

−1

0

1

2
b = 1.6    a = 0.8

t

x(
1,

2)

2200 2400 2600 2800 3000
−5

−4

−3

−2

−1

0

1
b = 1.6    a = 0.8

t

x(
2,

3)

−1 0 1 2 3
−4

−3

−2

−1

0

1

2
b = 1.6    a = 0.8

x(1,1)

x(
1,

2)

−1 0 1 2 3
−5

−4

−3

−2

−1

0

1
b = 1.6    a = 0.8

x(1,1)

x(
2,

3)

Figure 3: Chaotic attractor in a CNN composed by 9 cells
and described by the template (4) with b = 1:6 and a = 0:8.

As a case study we have considered a CNN composed
by 3� 3 cells and described by the following template

A =

2
4

a a a

�a b a

�a a �a

3
5 with b = 1:6; a > 0:6 (4)

The results of the simulations are shown in Figs. 1-5; we
have reported the steady-state waveforms of cells x12 and
x23 and the projection of the steady-state trajectory onto the
two planes (x11; x12) and (x11; x23).

The following phenomena are observed: for a > 0:6
(see Fig. 1) the CNN does not possess any more equilib-
rium points and a limit cycle occurs (probably through an
heteroclinic bifurcation as described in [6] for a smaller net-
work); by increasing a a typical period doubling bifurcation
is observed (Fig. 2), leading to the chaotic attractor shown in
Fig. 3. By further increasing a several periodic windows are
encountered (see Fig. 4) separating different chaotic regions
(see for example the chaotic attractor observed for a = 0:94
in Fig. 5).

Extensive simulations, that for lack of space are not re-
ported here, have revealed the existence of a wide gallery of
chaotic attractors and of several period doubling bifurcation
phenomena. The existence of these bifurcation processes
has also been checked through the computation of the limit
cycle Floquet’s multipliers.

4. CONCLUSIONS

We have investigated the occurrence of complex dynamic
behaviors (i.e. bifurcation processes, strange and chaotic
attractors) in autonomous space-invariant CNNs. There are
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Figure 4: Periodic window in a CNN composed by 9 cells
and described by the template (4) with b = 1:6 and a =
0:82.

some reasons for carrying on this study: a) most CNN im-
plementations exploit space-invariant templates; b) so far
no example of complex dynamics has been shown in au-
tonomous space-invariant CNNs. Hence, we are confident
that the identification of chaotic dynamics in such networks
might open the possibility of developing, on the existing
CNN chips, innovative chaos-based applications.

The principal results presented in the paper are the fol-
lowing: a) we have provided some sufficient conditions for
the instability of a space-invariant CNN (i.e. ensuring that
the network does not present stable equilibrium points): such
conditions can be easily checked by looking at the template
elements; b) we have verified that unstable CNNs, besides
the occurrence of limit cycles, quite often exhibit bifurca-
tion phenomena, leading to strange and chaotic attractors;
d) for a case-study we have investigated the bifurcation pro-
cesses leading to chaos.
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