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Abstract - Cellular neural networks (CNNs) are
analog dynamic processors that have found several
applications for the solution of complex computa-
tional problems. The mathematical model of a CNN
consists in a large set of coupled nonlinear differen-
tial equations that have been mainly studied through
numerical simulations; the knowledge of the dynamic
behavior is essential for developing rigorous design
methods and for establishing new applications. CNNs
can be divided in two classes: stable CNNs, with
the property that each trajectory (with the excep-
tion of a set of measure zero) converges towards an
equilibrium point; unstable CNNs with either a peri-
odic or a non/periodic (possibly complex) behavior.
The manuscript is devoted to the comparison of the
dynamic behavior of two CNN models: the original
Chua-Yang model and the Full Range model, that was
exploited for VLSI implementations.

I. Introduction

Cellular neural networks (CNNs) are analog dynamic
processors, suitable for solving all the computational
problems that can be formulated in terms of local in-
teractions among signals placed on a regular structure
[1], [2], [3]. The fundamental property that distinguishes
a CNN from a general neural network is the local con-
nectivity, that has allowed the realization of several high-
speed complex VLSI chips.

The original model of a CNN cell was introduced by
Chua and Yang in [1]. As far as the dynamics is con-
cerned, the Chua-Yang CNNs (CYCNNs) can be classi-
fied in two categories: stable CNNs, unstable CNNs with
a periodic behavior or a non/periodic (possibly complex)
behavior. In particular, CYCNN stability was widely
investigated: the main results are reviewed and summa-
rized in [4]. For what concerns unstable CYCNNs (i.e
CNNs which exhibit at least one attractor that is not a
stable equilibrium point) some examples of periodic limit
cycles were shown in [5]-[8]; some examples of complex
(chaotic) behavior were recently reported in [9].

The hardware realization of large-complexity CNN

chips has required to modify to original Chua-Yang
model, into a new one, called Full Range model [10],
[11]. Such a new model presents the characteristic of
reducing the signal-range of the state variables. Practi-
cal experiments, developed on the existing VLSI chips,
and extensive computer simulations have shown that in
most cases the qualitative dynamics of Full Range CNNs
(FRCNNs) is very similar to that of CYCNNs. Such
experiments, however, were mainly related to stable net-
works, exploited for image-processing applications. In
addition, from a mathematical point of view, the two
CNN models are described by rather different systems
of differential equations: as to the author knowledge, no
complete study about FRCNN dynamics has been, so far,
presented.

The manuscript is organized in four sections. In the
first section the CYCNN and the FRCNN models are rig-
orously defined, by assuming that the output functions of
both the models admit of a piecewise linear approxima-
tion. In the second section we will briefly summarize the
most significant results, regarding the stability of CYC-
NNs; such results are extended to FRCNNs, where it is
possible, and the stability properties of the two models
are compared. In the third section we will investigate
the periodic and non-periodic behavior of both CYCNNs
and FRCNNs. Finally the fourth section is devoted to
the Conclusions.

II. The Chua-Yang and the Full Range Models

We consider CNNs composed by N ×M cells arranged
on a regular grid and denote the position of a cell with
two indexes (k, l).

A CYCNN is governed by the following normalized
state equations

ẋkl = − xkl +
∑

|n|≤r,|m|≤r

Ânm yk+n,l+m

+
∑

|n|≤r,|m|≤r

B̂nm uk+n,l+m + I (1)
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where xkl and ukl represent the state-voltage and the in-
put voltage of cell (k, l); ykl is the output voltage, defined
through the following piecewise linear expression:

ykl = f(xkl) =
1

2
(|xkl + 1| − |xkl − 1|) (2)

Finally r denotes the neighborhood of interaction of each
cell; Â and B̂ are linear templates, that are assumed to
be space-invariant and I is the bias term.

An alternative and useful expression for the state equa-
tion of a CYCNN is obtained by ordering the cells in some
way (e.g. by rows or by columns) and by repacking the
state, the input, the output variables and the bias terms
into the vectors x , u and y , I . The following compact
form is obtained:

ẋ = −x + Ay + Bu + I (3)

where matrices A and B are obtained through the tem-
plates Â and B̂ , as explained in [12].

Full Range CNNs, that have shown to be suitable
for VLSI implementation, are described by the following
mathematical model

żkl = − zkl +
∑

|n|≤r,|m|≤r

Ânm zk+n,l+m − g(zkl)

+
∑

|n|≤r,|m|≤r

B̂nm uk+n,l+m + I (4)

where the state is now represented by zkl, whereas ukl,
I, Ânm and B̂nm still represent the input, the bias and
the linear templates defined above. For the sake of the
simplicity, we assume that the function g(·) admits of the
following piecewise linear expression:

g(zij) =







h(zij + 1) zij < −1
0 |zij | ≤ 1
h(zij − 1) zij > 1

(5)

where h is supposed to be large enough for approximating
the nonlinear characteristic shown in Fig. 4 of [11].

By ordering the state, the input, and the bias terms
into the vectors z , u and I , the following compact form
is obtained:

ż = −z + Az − g(z ) + Bu + I (6)

We remark that, due to the piecewise approximation of
the output functions f(·) and g(·), the state space of both
a CYCNN and a FRCNN is composed by regions, that
can be classified as follows: a) linear regions if all the cells
lye in the linear part of their characteristic (i.e. |zij | ≤

1 and |xij | ≤ 1); b) saturation regions if all the cells
are saturated (i.e |zij | > 1 and |xij | > 1); c) partial
saturation regions if some cells are saturated and some
others are not.

A CNN composed by N×M cells exhibits 3NM regions.

III. Stability of the two CNN models

In image processing applications the input image is
loaded either as the initial state x0 or as a constant in-
put u . The output image is obtained through the time
evolution of the network and is extracted from the out-
put voltage y . In order to ensure a proper working of
the network it is needed that the CNN be completely
stable or stable almost everywhere (i.e. stable with the
exception of a set of initial conditions of measure zero).
The rigorous definition of these two type of stability is
reported below:

Definition 1: An autonomous dynamical system, de-
scribed by the state equation:

ẋ = f (x ), x ∈ Rn, f : Rn → Rn (7)

is said to be completely stable (or convergent) if for each
initial condition x0 ∈ Rn

lim
t→∞

x (t,x0) = const (8)

where x (t,x0) is the trajectory starting from x0.

Definition 2: An autonomous dynamical system, de-
scribed by the state equation:

ẋ = f (x ), x ∈ Rn, f : Rn → Rn (9)

is said to be stable (or convergent) almost everywhere
if for each initial condition x0 ∈ Rn (with at most the
exception of a set of measure zero)

lim
t→∞

x (t,x0) = const (10)

where x (t,x0) is the trajectory starting from x0.

The complete stability of the Chua-Yang model was
studied in several papers [13], [14], [15], [16] including
the original paper, where the CNN paradigm was intro-
duced [1]. The results are summarized in the following
Theorems [4]:

Theorem 1 : A sufficient condition for the complete sta-
bility of a CYCNN, described by state equations (3), is
that there exists a positive diagonal matrix D , such that
the product DA is a symmetric matrix.

Definition 3: A matrix P with positive diagonal elements
is said to be strictly diagonal dominant if:

∀ i, pii >
∑

j 6=i

|pij | (11)
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Theorem 2 : A sufficient condition for the complete sta-
bility of a CYCNN, described by state equations (3), is
that the comparison matrix of A − I is a nonsingular
M -matrix (or equivalently that there exists a positive di-
agonal matrix D such that (A−I )D is strictly diagonally
dominant).

Stability almost everywhere was investigated in [17]:
the results are based on the mathematical analysis pre-
sented in [18] for cooperative systems of differential equa-
tions. The following Theorem holds [4]:

Theorem 3 : A sufficient condition for the stability al-
most everywhere of a CYCNN, described by state equa-
tions (3), is that the matrix A is irreducible and there
exists a diagonal matrix D such that DAD−1 presents
non-negative off-diagonal elements.

The stability investigation of the Full Range model al-
lows to prove very similar properties. The following the-
orems can be proved:

Theorem 4 : A sufficient condition for the complete sta-
bility of a FRCNN, described by (6), is that there exists
a positive diagonal matrix D , such that the product DA

is a symmetric matrix and that all the equilibrium points
are isolated.

Proof : We assume that the input u and the bias term
I be null: the extension of the proof to nonzero inputs
and bias simply requires slight modifications. Let T be
a diagonal matrix defined as T = diag(t1, ..., tn) such
that D = T 2. Let us consider the state transformation
w = Tz . The state equation (6) can be written as:

ẇ = Tż = −w + TAT−1w −Tg(T−1w) (12)

We denote with P the matrix P = TAT−1 −U , where
U denotes the identity matrix. Due to the hypotheses
of the Theorem DA = T 2A is symmetric; hence the
matrix P = T−1DAT−1 − U is also symmetric. The
state equation (12) admits of the following form:

ẇ = Pw −Tg(T−1h) (13)

Let us consider the Lyapunov function:

V (w(t)) = −
1

2
w>Pw +

∑

i

∫ t
−1

i
wi

t
−1

i
wi(0)

t2i gi(v)dv. (14)

Since P is symmetric, the time derivative of V (t) yields:

V̇ (t) = −ẇ>Pw +
∑

i

t2i gi(t
−1
i wi)t

−1
i ẇi

= −ẇ>[Pw −Tg(T−1w)]

= −ẇ>ẇ ≤ 0 (15)

Owing to the fact that all the trajectories are bounded,
by La Salle’s invariance principle they approach the set
M = {h : V (h) = 0} which coincides exactly with the
set of equilibrium points of the dynamical system (15). If
such equilibrium points are isolated, La Salle’s principle
implies that the CNN is completely stable, according to
Definition 1.

Theorem 5 : A sufficient condition for the complete sta-
bility of a FRCNN, described by (6), is that the com-
parison matrix of A − I is a nonsingular M -matrix (or
equivalently that there exists a positive diagonal matrix
D such that (A− I )D is strictly diagonally dominant).

Proof : If D is the identity matrix, the Theorem is easily
proved by use of the following arguments : a) due to the
diagonally dominance property, each cell that reaches a
saturated value ±1 cannot enter back the linear part of its
characteristic; in addition the linear region and the par-
tial saturated regions should exhibit at least one eigen-
value with positive real part; b) due to a) a steady-state
trajectory cannot belong to two or more regions of the
state space; moreover periodic and nonperiodic orbits be-
longing to a single region are prevented. It is derived that
each trajectory should converge to an equilibrium point,
i.e. the network is completely stable. If D is a generic
positive diagonal matrix, the same arguments can be ap-
plied by considering the state transformation w = Dz.

Theorem 6 : A sufficient condition for the stability al-
most everywhere of a FRCNN, described by state equa-
tions (6), is that the matrix A is irreducible and there
exists a diagonal matrix D such that DAD−1 presents
non-negative off-diagonal elements.

Proof : Under the state transformation w = Dz the
state equation (6) can be written as:

ẇ = Dż = −w + DAD−1w −Dg(D−1w) (16)

If DAD−1 exhibits non-negative off-diagonal ele-
ments, then the system (16) is cooperative. Hirsch’s re-
sults for cooperative systems [18] ensures the stability
almost everywhere.

The above results shows that the conditions under
which stability can be proved are almost identic for both
CYCNNs and FRCNNs. In addition to that, it was
shown in [10] that there is a one to one correspondence
between the equilibrium points of the CYCNN described
by (3) and the FRCNN described by (6): such a cor-
respondence holds also for the stability characteristics
(eigenvalues of the Jacobian matrix) of each equilibrium
point. This allows to conjecture that also the dynamics
of the two CNN models be similar.
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Fig. 1. Periodic waveforms in a CYCNN, described by an
opposite-sign template

IV. Periodic and non-periodic behavior of the

two CNN models

The investigation of the dynamic behavior of unstable
CNNs, i.e. networks that exhibit either a periodic or a
non periodic behavior is more complex than the study
of stability. Apart from some studies, based on spectral
techniques [19], [20], [21], most of the results are based
on numerical simulations.

We report here two statements, that compare the
global dynamic behavior of a CYCNN and a FRCNN.
The proofs are already in progress: however the state-
ments will be reported as conjectures, because some del-
icate technical aspects of the proofs have not been com-
pleted so far.

Conjecture 1: Let us assume that the CYCNN, described
by (3) presents a steady state periodic limit cycle, cross-
ing a sequence of region R1, ...RN , R1. Then the FR-
CNN, described by equation (6) also exhibits a periodic
limit cycle, that crosses the same sequence of regions
R1, ...RN , R1

Conjecture 2: Let us assume that the CYCNN, described
by (3) presents a generic trajectory crossing a sequence
of region R1, ...RN , .... Then the FRCNN, described by
equation (6) also exhibits a trajectory, that crosses the
same sequence of regions R1, ...RN , ...

The validity of the above conjectures have also been
verified through numerical simulations. As an example,
we report here the simulation of a one-dimensional net-
work composed by 12 cells and described by the opposite-
sign template [−3, 2, 3]. Figs. 1 and 2 shows the time
waveforms of the first and the second cell for the Chua-
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Fig. 2. Periodic waveforms in a FRCNN, described by an
opposite-sign template

Yang and the Full Range model respectively: it is seen
that both the CYCNN and the FRCNN model exhibit a
periodic limit cycle. We also mention the results reported
in ([9]), where it is shown that both a CYCNN and a FR-
CNN model may exhibit a complex dynamic behavior for
the template below (with b = 1.6 and a = 1):

Â =





a a a

−a b a

−a a −a



 with b = 1.6; a = 1 (17)

The non-periodic attractors (possibly chaotic, see [9])
presented by the two CNN models are reported in Fig. 3
and 4.

Additional significant examples will be reported in the
final version of the manuscript.

V. Conclusions

Cellular Neural Networks are complex dynamical sys-
tems described by a large set of nonlinear differential
equations. The knowledge of their dynamic behavior is
essential in order to develop rigorous design methods and
new applications.

Two CNN models have been considered in the litera-
ture: the original Chua-Yang model, that was introduced
in the seminal paper of L.O. Chua [1], [2] and represents
the starting point of all the CNN studies and applica-
tions; the Full Range model, that was introduced in [10],
[11] and is more suitable for VLSI implementation.

In this manuscript we have compared the dynamic be-
havior of the two models for what concerns the stability
properties and the global dynamic behavior. We have
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Fig. 3. Non-periodic attractor in a 3 × 3 CNN described by
template (17).

proved that the conditions under which complete stabil-
ity (or stability almost everywhere) can be proved are al-
most identic for the two models. Then we have presented
two statements, regarding the global dynamic behavior
of the two models: they claim that there is a one to one
correspondence between the periodic and the nonperi-
odic invariant limit sets of the two CNN models. The
statements are enunciated as conjectures; their proofs
are already in progress, but some technical details are
still missing. The conjectures have been verified through
several numerical simulations.
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