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Abstract—Indices based on correlation or more sub-
tle strategies are among the standard ways to infer
dependencies (i.e., exchange of information or cou-
pling) in aggregations of different systems observed
in the time domain. We propose a new index based
on Rényi entropy and confront it with other indices,
studying if some of these techniques can recognize
when we are observing the same system twice, even
when the observation conditions are bad. It turns out
that our index gives better results than the other
examined ones. Moreover, we notice that those indices
based on data processed with state space reconstruction
and filtered with Principal Component Analysis are,
generally, less sensitive to bad observations. However,
state space reconstruction by itself is not enough to
obtain good performances when the data are very noisy,
and a Principal Component Analysis filter is needed to
improve the results.

I. Introduction

Given multivariate measurements in the time domain,
the issue of inferring cooperation (flow of information or
coupling) among them has attracted a lot of attention of
researchers (see for example [1]–[6]), who proposed many
different indices to address it. Here we propose a new
index, a simple extension of another one already present
in literature [3], and we give some numerical examples
which highlight the pros of this novelty and the importance
of state space reconstruction with time-delay technique
and of Principal Component Analysis (PCA) [7]. In the
first block of experiments, a chaotic system is observed
twice, with different observation matrices, and noise is
added. Several cooperation indices are then computed and
compared to see if they are robust against observation
differences and noise. Loosely speaking, we confront how
close they get to the ideal value of 1, corresponding to
the maximum of cooperation—which, theoretically, should
always be obtained, as we are looking at the same system,
just from different angles. In the second block of experi-
ments, still at a preliminary stage, we look at two coupled
systems, to see if the considered indices can scale with
respect to the coupling strength.

II. Cooperation estimators

In the following we use this notation: for t ∈ [0, T ] let
x(t) ∈ R

U the trajectory of a dynamical system whose

evolution is described by the ordinary differential system
ẋ = f(x). An observation y(t) ∈ R is obtained from x(t)
through the matrix C ∈ R

1×U as y(t) = Cx(t), t ∈ [0, T ]
and a sampled observation s(ℓ) with sampling time δt is
given by s(ℓ) = y(ℓδt), ℓ ∈ {0, 1, . . . , L}. As we consider
more than one experiment, we use a superscript to denote
each one, so that x

n(t) is the trajectory of the experiment
n and x

n
u(t) is its component u, with n ∈ {1, 2, . . . , N}

and u ∈ {1, 2, . . . , U}. We are interested in estimating
the cooperation between two different trajectories x

1(t)
and x

2(t) given two sampled observation of them s1(ℓ)
and s2(ℓ) obtained with two unknown and maybe differ-
ent matrices C

1 and C
2. Without loss of generality, we

suppose the observations normalized to have zero mean
and unitary variance. As shown in [8], [9], given a scalar
sampled observation s(ℓ) of a multidimensional system on
an attractor M, we can construct a space R

V such that
M is embedded into R

V with the technique of time delay.
With time delay τ and dimension V , the multidimensional
series reconstructed in this way is z(ℓ), where each element
z(ℓ) is given by z(ℓ) = [s(ℓ) s(ℓ + τ) . . . s(ℓ + (V − 1)τ)]
for ℓ ∈ {1, . . . , L − (V − 1)τ}. Determining good values
for the parameters V and τ is a difficult task. We choose
to use, respectively, the first zero of the mutual infor-
mation function and the false nearest neighbor technique
[9] as implemented in the TISEAN routine [10]. Given
sn(ℓ), . . . , sN(ℓ) N sampled observations (time series) let
P ∈ R

N×N the correlation matrix whose elements Pij are

Pij =
Cov

(

si, sj
)

√

Cov (si, si) · Cov (sj , sj)
, (1)

where Cov () is the covariance.

A. S and its time-delay variants

In [2], [3], the authors introduce an index to measure
cooperation among cluster of subsystems from time series.
We briefly summarize how it works. Let {λ1, . . . , λN} the
eigenvalues of the correlation matrix P Eq. (1) of N
time series whose cooperation we are interested in. The
Shannon entropy-like quantity

I = −

N
∑

n=1

λn

N
log

(

λn

N

)

(2)



is inversely proportional to the amount of cooperation
among the N time series and ranges in [0, log(N)], so that

S = 1 − I/ log(N) (3)

is a normalized index of cooperation among
s1(ℓ), . . . , sN (ℓ). The index S can be extended to work
with delay-embedded time series too, with an appropriate
partitioning of the correlation matrix and some minor
modifications [2], [3]. In the following we consider just
two time series, (N = 2) and denote by S the index
applied to these time series and with SEmb the S index
applied to their delay-embedded version. With SPCA we
denote the index S applied to the delay-embedded version
of the two time series where the reconstructed space is
firstly increased (we take 2τV ) with delay fixed to 1 and
then reduced using the PCA technique [7] as a filtering
procedure.

B. The C index and some considerations on S

As a comparison, we consider a simple cooperation index
between two time series s1(ℓ) and s2(ℓ) given by the
absolute value of the correlation and call it C. As we
consider normalized time series, we have that C(s1, s2) =
∣

∣Cov
(

s1, s2
)∣

∣. Differently from S, this index can neither
deal with clusters of more than two indices nor with
delay-embedded time series. We can explicitly write the
relation of C and S with the covariance of s1 and s2, say
ρ = Cov

(

s1, s2
)

, in an analytic way. In Fig. 1 we plot
S and C as a function of ρ. As both C and S are even,
we consider only the values ρ ∈ [0, 1]. We notice than the
index S is very steep near the value 1, so that when dealing
with highly correlated time series every little difference on
the ρ axis is amplified. Moreover, the value of S is always
lower than C. We would like to consider an index with
properties similar to those of S (ability to analyze clusters
and delay-embedded time series) but with values nearer to
C, to fully exploit its intrinsic information.

C. Sα: S with Rényi entropy

The S index of N time series s1(ℓ), . . . , sN (ℓ) is based on
Shannon entropy of the spectrum of the correlation matrix
P Eq. (1). We generalize it using Rényi entropy Iα [11],
defining, for the given λ1, . . . , λN eigenvalues of P,

Iα =
1

1 − α
log

(

N
∑

n=1

(

λn

N

)α
)

. (4)

As Rényi entropy of order α converges to Shannon entropy
for α going to 1, we have that Iα converges to I defined
in Eq. (2). The quantity defined in Eq. (4) is inversely
proportional to the amount of cooperation among the N
time series and ranges in [0, log(N)], so that

Sα = 1 − Iα/ log(N) (5)

is a normalized index of cooperation among
s1(ℓ), . . . , sN (ℓ). The extra degree of freedom provided by
α allows us to fine tune the index to be nearer the value
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Fig. 1. The indices S (dotted line, Eq. (3)), C (solid line) and S6

(dash-dotted line, Eq. (5)) as functions of ρ, the correlation between
two time series.

of C. For α = 6, analytically computing Sα as a function
of ρ, as we have previously done for S, we obtain the
plot shown in Fig. 1 with a dash-dotted line. The value
α = 6 has been obtained by empirical trial and error and
we fix this value for all the following experiments, even
if further analyses on the influence of this parameter are
needed. This index can be extended to delay-embedded
time series as S, so we denote with Sα

Emb and Sα
PCA the

counterpart of SEmb and SPCA using Rényi entropy of
order α instead of Shannon entropy.

D. R, a mutual information based index

Indices based on correlation are generally easy to com-
pute, involving highly optimized matrix operations, but
consider just second order statistics. On the opposite, mu-
tual information [12], albeit difficult to estimate, exploits
all the moments. As a comparison, we consider also the
normalized redundancy R of two time series s1(ℓ) and s2(ℓ)
defined as

R(s1, s2) =
MI(s1, s2)

min (H(s1), H(s2))
, (6)

where H(s) is the entropy of s and MI(s1, s2) = H(s1) +
H(s2) − H(s1, s2) is the mutual information between s1

and s2 [12]. We denote with REmb(s
1, s2) and RPCA the

redundancy index applied to delay-embedded and delay-
embedded and PCA filtered time series, respectively.

III. Experimental setup

A. Observing the same system twice

The first experiment we perform is to observe the same
chaotic system, whose trajectory is x(t), through two
different matrices, to corrupt the observed time series
with noise and to apply the previous indices to study
cooperativeness between them. In an ideal setting, we
should obtain the maximum value (i.e., 1) regardless of
the matrices and the noise, as we are observing the same
system. To study how, in reality, the observation setup



affects the performance of the indices, we observe the
system with a fixed matrix C

1 and then with a matrix
C

2 depending on a parameter p ∈ [0, 1] such that for
p = 1 C

2 = C
1, while for p 6= 1 C

1 6= C
2. We focus

on three systems: The Colpitts oscillator, [13] Eq. (7), the
Lorenz system, [14] Eq. (8) left, and the Rössler system,
[15] Eq. (8) right



























ẋ1 =
g

Q(1 − k)
x3 +

αg

Q(1 − k)

(

1 − e−x2

)

,

ẋ2 =
g

Qk
x3 +

−(1 − α)g

Qk

(

1 − e−x2

)

,

ẋ3 = −
Qk(1 − k)

g
(x1 + x2) −

1

Q
x3,

(7)

with k = 0.5 and α = 0.996 and the parameters Q, g
uniformly chosen in an interval of relative amplitude 10%
around the values 100.15 and 100.625, respectively;














ẋ1 = σ(x2 − x1),

ẋ2 = ρx1 − x2 − x1x3,

ẋ3 = x1x2 − βx3,















ẋ1 = x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b + x1(x1 − c),

(8)

with ρ, σ and β uniformly chosen in an interval with
relative amplitude of 10% around the values 10, 27 and
8/3, respectively, and a, b and c uniformly chosen in
an interval with relative amplitude of 10% around the
values 0.1, 0.1 and 14, respectively. For each system, 100
histories are generated in the following way: (a) Initial
conditions and system parameters are randomly gener-
ated; (b) The system is integrated using MatLab standard
routines. Transient ([0, 200π] for Colpitts system, [0, 100]
for Lorenz system and [0, 500] fo Rössler) is discarded; (c)
The system is integrated again, using the last point of the
previous step as the new initial condition, and data are
sampled to generate time series of 1000 points. Time span
and sampling time are, respectively, [0, 20π], 2π/100 for
the Colpitts systems, [0, 10], 0.01 for the Lorenz systems
and [0, 5], 0.05 for the Rössler systems. Each sampled
trajectory is then observed through the matrices C

1 =
[1 0 0],C2 = [p (1 − p) 0]; C

1 = [1 0 0],C2 = [p 0 (1 − p)];
C

1 = [0 0 1],C2 = [0 p (1 − p)]; with p ∈ [0, 1]. The time
series s1 = C

1
x and s2 = C

2
x are then corrupted with

gaussian noise. We examine the cases where the SNR in dB
is 40, 20, 12, and 6. The cooperation between the two time
series is evaluated with the 10 indices previously described.
We summarize the results in Tab. (I) and Tab. (II), where
we present the mean and the standard deviation of the
indices against the SNR. To compute these figures, we
merged together the observations obtained from histories
generated as described in (a) – (c) for the different systems
of Eq. (7) and Eq. (8) using different matrices and different
values of p, in order to simulate a blind setup.

B. Observing two coupled systems

In this second block of experiments, we consider a
Rössler system linearly driving a Lorenz one, so that the

ξ
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Fig. 2. Mean of the indices S (dotted line, Eq. (3)), C (solid line), S6

(dash-dotted line, Eq. (5)) and R (dashed line, Eq. (6)) with respect
to the coupling ξ.

overall system [x1 x2 x3 x4 x5 x6]
′ (′ denotes transpose)

obeys






















ẋ1 = T [x2 − x3] , ẋ2 = T [x1 + ax2] ,

ẋ3 = T [b + x1(x1 − c)] , ẋ4 = σ(x5 − x4),

ẋ5 = ρx4 − x5 − x4x6 + ξ(x2 − x5),

ẋ6 = x4x5 − βx6,

(9)

with ξ coupling parameter ranging in [0, 1] ρ = 10, σ = 27,
β = 8/3, a = 0.1, b = 0.1, c = 14, and T = 6 to adjust
the different speed of the Rössler system compared to the
Lorenz one. For different random initial conditions, we
integrate Eq. (9) using MatLab standard routines. The
transient ([0, 100]) is discarded and then the system is
integrated again and data are sampled to generate time
series of 1000 points. Time span is [0, 10] and sampling
time 0.01. We generate 20 histories for each of 6 equally
spaced values of ξ in [0, 1] and then observe the trajectories
through the matrices C

1 = [0 1 0],C2 = [1 − p p 0]; C
1 =

[0 1 0],C2 = [0 p 1−p]; C1 = [1 0 0],C2 = [p 0 1−p]; with
p ∈ {0, 0.5, 1}. The time series s1 = C

1[x1,x2,x3]
′ and

s2 = C
2[x4,x5,x6]

′ are then corrupted with gaussian noise
such that the SNR in dB is 6. The cooperation between the
two time series is evaluated with the indices C, S, S6 and
R previously described. In this preliminary experiment,
we focus on non embedded time series, just to see if the
indices can scale with the coupling or not. The embedding
procedure brings other aspects to be further studied. We
summarize the results in Fig. 2, where we present the mean
of the indices against the coupling, merging together the
observations for different matrices and different values of
p to simulate a blind setup.

IV. Results and discussion

A. Observing the same system twice

From Tab. (I) and Tab. (II) we see that the indices
based on Rényi entropy can obtain better values than



SNR (dB) C S SEmb SPCA R REmb RPCA S6 S6

Emb
S6

PCA

40 0.798448 0.666621 0.655491 0.744656 0.397295 0.875920 0.922469 0.798674 0.845025 0.890319

20 0.790627 0.644281 0.434230 0.651020 0.228836 0.619423 0.761979 0.791520 0.732159 0.850599

12 0.751163 0.555550 0.295870 0.547210 0.135950 0.378541 0.539220 0.754895 0.632231 0.798816

6 0.638738 0.372483 0.206693 0.450592 0.070684 0.212562 0.391126 0.645859 0.538725 0.745480

TABLE I

Mean of cooperation indices for different SNR (dB)

SNR (dB) C S SEmb SPCA R REmb RPCA S6 S6

Emb
S6

PCA

40 0.282172 0.336523 0.230555 0.224007 0.225174 0.081680 0.055770 0.295574 0.184844 0.157606

20 0.279412 0.322632 0.165724 0.212705 0.104591 0.084770 0.131117 0.293323 0.172231 0.160062

12 0.265442 0.272811 0.106298 0.198019 0.058904 0.066050 0.158097 0.281776 0.162027 0.162371

6 0.225070 0.178392 0.072710 0.168480 0.030152 0.044441 0.133228 0.245935 0.145833 0.161864

TABLE II

Standard deviation of cooperation indices for different SNR (dB)

those based on Shannon entropy and comparable or better
than those based on mutual information, which require a
bigger computational effort to be evaluated. The indices
working with delay-embedded time series without filtering
have poor performances as the SNR decreases, probably
due to the fact that the reconstructed space is made up of
uncorrelated noise for a great part. However, when coupled
with PCA filtering, the delay-embedding technique can
improve the results and, at the end, we see that the index
S6

PCA is able to recognize a high value of cooperation
with low standard deviation even with SNR of 6 dB,
outperforming all the other indices.

B. Observing two coupled systems

From Fig. 2, even if it is a preliminary and incomplete
result, we see that the index S6 is able to scale with
respect the coupling strength in a way more similar to
the correlation than the index S. As an advantage on
the simple correlation, on the other hand, it can process
delay-embedded time series and clusters of systems. Delay-
embedded version and other values for the parameter α
need to be tested.

V. Conclusion

We presented a slightly modified version of a cooper-
ation index known in literature as S estimator [2], [3].
Our version exploits the generalization of Shannon entropy
to Rényi entropy to behave in a way more similar to the
simple correlation, which is indeed the starting point for
both indices. As an advantage on the correlation, however,
it can process time-embedded time series and work with
clusters of systems like the original S index.
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