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Abstract—Synchronization plays a central role in information
processing in many systems. In this work, starting from a
method for predicting the behavior of the synchronous state in
a network of Hindmarsh-Rose neurons, the dependence of the
synchronization properties of the network on the topology is
shown.

I. INTRODUCTION

During the last few years networks of bio-inspired neu-

rons have interested an increasing number of researchers

in all branches of science. In particular, spiking neurons

have attracted the interest because many studies consider this

behavior an essential component in information processing

by the brain [1]. In this class of neurons, bursting neurons

are of relevant interest because they characterize a variety of

biological oscillators. The electrical potential of these neurons,

which typically is the state variable that contains the main

information, undergoes a succession of alternating active and

silent phases in which, respectively, it has a spiking behav-

ior (very fast oscillations) and then evolves slowly without

oscillations. Furthermore, many studies suggest that retrieval

of the stored patterns is related to spontaneously occurring

synchrony in networks of neurons (see [2].) This motivates the

investigation of the conditions for synchronization in networks

of bursting neurons [3]–[6].

The synchronization conditions of a network of Hindmarsh-

Rose neurons have been studied in several papers (for example

see [3], [4]) and more detailed conditions have been recently

introduced in [5], where two different types of coupling

have been considered. In the case of synaptic coupling the

synchronous behavior may be different from the behavior of

an isolated neuron.

In [6] the bifurcation diagram of the synchronous state

with respect to the product between the coupling strength

gs and the number k of connections of each cell (called

degree hereafter) has been introduced. Therefore, a complete

method to analyze and synthesize the synchronous state of

a network of Hindmarsh-Rose neurons by combining the

synchronization conditions of the network, obtained in [5],

and the bifurcation diagram of the synchronous state, proposed

in [6], is available. Thanks to this method, it is possible

to verify that the synchronization properties depend on the

topology of the network: this is the main aim of this paper.

At first, in Section II some preliminaries are introduced:

the Hindmarsh-Rose neuron model, the coupling function, the

network equations, and the synchronous state equations. Then,

in Section III, the synchronization properties presented in [5]

and the bifurcation diagram presented in [6] are summarized.

In Section IV the influence of topology on the synchronization

properties is shown. Conclusions (Section V) close the paper.

II. PRELIMINARIES

The Hindmarsh-Rose neuron model [7], a simplified version

of the Hodgkin-Huxley model and a modification of the

FitzHugh equations – originally proposed to model the syn-

chronization of firing of two snail neurons – can be described

by the following equations [4], [8]:




ẋ(t) = fx(x, y, x) = ax2 − x3 − y − z
ẏ(t) = fy(x, y, x) = (a + α)x2 − y
ż(t) = fz(x, y, x) = µ (bx + c − z) .

(1)

In these equations x(t) represents the membrane potential,

usually considered as a natural output of the cell, and y(t)
and z(t) are the recovery and the adaptation variables, which

account for fast and slow ion currents respectively. Let us use

the same parameters as in [4], [5], namely a = 2.8, b = 9,

c = 5, α = 1.6, and µ = 0.001. In Fig. 1 the time evolution

of the state variables is shown, where it is possible to see that,

after a short transient, it is periodic.

It is possible to model the coupling in a network of N
such neurons in different ways [5], but in this work we focus

on synaptic coupling between the x variables. The synaptic

coupling can be modeled as a (static nonlinear) sigmoidal

function, which is the simplest one in a neuronal system [9]:

γ(xj) =
1

1 + e−ν(xj−θs)
(2)

where the two free parameters are chosen to be ν = 10 and

θs = −0.25. The evolution of the i-th neuron is then ruled by
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Fig. 1. Time evolution of the state variables of an isolated neuron according
to the Hindmarsh-Rose model.

the following equations




ẋi(t) = fx(xi, yi, xi) − gs (xi − Vs)
N∑

j=1

cij γ(xj)

ẏi(t) = fy(xi, yi, xi)

żi(t) = fz(xi, yi, xi)

(3)

where gs is the coupling strength, Vs is the reversal potential,

assumed to be Vs = 2, and cij are the elements of the

adjacency matrix C: cii = 0, cij = cji = 1 if neurons i and

j are connected to each other, and cij = cji = 0 otherwise.

Let ξi = (xi, yi, zi)′, f = (fx, fy, fz)′, and Γ(ξj) =
(γ(xj), 0, 0)′, Equation (3) can be recast as follow:

ξ̇i = f(ξi) − gs (xi − Vs)
N∑

j=1

cij Γ(ξj) (4)

In order to obtain the conditions of identical synchroniza-

tion, the master stability function approach (see [10], [11])

has been used in [5]. It has been shown that, by considering

the identical synchronization conditions, i.e. ξi = ξ∗ =
(x∗, y∗, z∗)′ ∀i, the identically synchronous state exists only

if the sum of cij is constant with respect i:

N∑
j=1

cij = const = k. (5)

Then, the evolution of the synchronous state is described

by the following system of ordinary differential equations:

ξ̇∗(t) = f(ξ∗) − η (x∗ − Vs)Γ(ξ∗) (6)

where η = kgs is a parameter of the network taking account

of the number k of connections of each node and the coupling

strength gs. In the next Section the synchronization properties

of networks of Hindmarsh-Rose neurons, studied in [5], and

the bifurcation diagram of the synchronous state, presented

in [6], are summarized.
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Fig. 2. Zero-Lyapunov exponent curve (with respect η parameter) of the
master stability function associated to the synchronous state equation of a
Hindmarsh-Rose neuron network.

III. SYNCHRONIZATION PROPERTIES

In Fig. 2 a zero-Lyapunov exponent curve, with respect to η
parameter, is reported; this curve is obtained from a modified

master stability function associated to the synchronous state

equation of a Hindmarsh-Rose network with synaptic coupling

(Equation 6). This curve contains all the information about

the synchronization. In fact, taken a network, its η parameter

is known: η̄ = kgs. The value of α that correspond to η̄,

according to the zero-Lyapunov exponent curve Λ(α, η) =
0, can be estimated: ᾱ = α(η̄). The network is a Class-A
network (see [5], [11] for details), therefore it synchronizes

if and only if the second largest eigenvalue of the adjacency

matrix, namely λ2(C), satisfies

gs · λ2(C) < ᾱ (7)

Thanks to the above results, the synchronization of a net-

work of Hindmarsh-Rose neurons can be verified, but there

is an open question about this network yet. In fact, analyzing

Equation (6), the synchronous behavior may be different from

the behavior of an isolated Hindmarsh-Rose neuron, unless

in the trivial case η = 0. It follows that the behavior of

the synchronous state with respect to η parameter has to be

analyzed. In Fig. 3 a simplified version of the bifurcation

diagram (introduced in [6]) is reported in which only the

attractors are shown.
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Fig. 3. Simplified bifurcation diagram, reporting only the attractors, of the
synchronous state equation with respect to η parameter.

Taking η as bifurcation parameter, it is possible to identify 5

different types of attractors in 5 not overlapping intervals and

one isolated point. In the isolated point R0 (η = 0) and R2

region (η ∈ (1.23, 1.29)) a spiking burst behavior is exhibited,

i.e. there is a succession of two alternating phases (bursts) and

the spikes are present only in the active one. Note that the

point R0 corresponds to an isolated Hindmarsh-Rose neuron.

In R1 region (η ∈ (0.00, 1.23)) a spike behavior takes place.

On the other hand, the synchronous behavior is composed of

damped oscillations on bursts in region R3 (η ∈ (1.29, 1.80)).



Fig. 4. Topology of a network belonging the class N(16, 3). The cells are
numbered clockwise starting from the black one.

The synchronous state exhibits a periodic behavior (only burst

phases) in R4 region (η ∈ (1.80, 2.88)). Finally, in R5 region

the behavior reduces to a stable equilibrium point.

Starting from the results summarized in this Section, the

synchronization properties can be connected with the topology

of the network taking into account that the eigenvalues (spec-

trum) of the adjacency matrix can change with the topology.

This is the aim of the next Section.

IV. TOPOLOGY INFLUENCE

Let us consider classes of (connected) networks of

Hindmarsh-Rose neurons N(N, k) defined as the set of net-

works characterized by a number of nodes N and a node

degree k. As seen in Section III, these networks can be

synchronized by choosing an appropriate value of η and

hence of the coupling strength gs = k/η. Furthermore, it is

possible to analyze the synchronization of a given network or

to synthesize a new network composed of Hindmarsh-Rose

neurons with a particular synchronous state by using both the

zero-Lyapunov curve of Fig. 2 and the bifurcation diagram of

Fig. 3 (see [6] for details and examples.)

Another interesting point of view is that maintaining the

same coupling strength for all the networks of a class, in

general they do not have the same synchronization properties:

changing the topology of the network its spectrum changes,

and hence, if a network satisfies Equation (7), it may happen

that another one does not. In this Section this relation between

the topology of the network of Hindmarsh-Rose neurons and

the synchronization properties is investigated by analyzing the

synchronization behavior of two networks belonging to the

same class N(N, k), but with different topology.

Let us consider the class of networks N(16, 3) and the

coupling strength gs = 0.4287. The ᾱ value is estimated from

the zero-Lyapunov exponent curve of Fig. 2: ᾱ � 1.06. It

follows that a network synchronizes if and only if

gs · λ2(C) < ᾱ � 1.06 (8)

The first network is characterized by the topology shown

in Fig. 4: the adjacency matrix C, not reported for lack

of space, has been computed numbering clockwise the cells
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Fig. 5. State evolution of the cell 1 of the network whose topology is reported
in Fig. 4.
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Fig. 6. Quadratic error of the evolution of the network whose topology is
reported in Fig. 4.

starting from the black one. The two largest eigenvalues of the

associated adjacency matrix are

λ1 = 3.0 λ2 = 2.4142 (9)

It follows that the considered network synchronizes because

gsλ2(C) � 1.035 < ᾱ � 1.06 (10)

The evolution of the state variables of the cell 1 and the total

quadratic error are reported respectively in Fig. 5 and Fig. 6:

the states of the cells synchronize because the quadratic error

converge to zero.

The second network is characterized by the topology shown

in Fig. 7 in which the cells are numbered following the

Fig. 7. Topology of a network belonging the class N(16, 3). The cells are
numbered clockwise starting from the the black one.
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Fig. 8. State evolution of the cell 1 of the network whose topology is reported
in Fig. 7.
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Fig. 9. Quadratic error of the evolution of the network whose topology is
reported in Fig. 7.

same rule used for the previous example. The three largest

eigenvalues of the associated adjacency matrix are

λ1 = 3.0 λ2 = λ3 = 2.7093 (11)

It follows that the considered network does not synchronize

because

gs · λ2(C) � 1.161 > ᾱ � 1.06 (12)

The evolution of the states variabels of the cell 1 and the

total quadratic error are reported respectively in Fig. 8 and

Fig. 9: the states of the cells do not synchronize because

the quadratic error does not converge to zero. In particular,

Figs. 10 and 11 show the evolution of the state of the cells 1

and 9 and the quadratic error, respectively, in a time interval

that points out the differences after a long transient.

This example shows that networks belonging to the same

class and with the same coupling strength may have different

synchronization properties.

V. CONCLUSION

In this work, starting from a method for predicting the

behavior of the synchronous state of a network of Hindmarsh-

Rose neurons, the dependence of the synchronization proper-

ties of a network – keeping constant the number of nodes N ,

their degree k, and the coupling strength gs – on its topology

has been studied. This dependence has been highlighted by an

example.
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Fig. 10. Enlargement of the state evolution, after the transient, of two cells
of the network whose topology is reported in Fig. 7: the solid line is of the
cell 1 and the dotted line is of the cell 9.
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Fig. 11. Enlargement of the quadratic error of the evolution of the network
whose topology is reported in Fig. 7 in the same time interval used in Fig. 10.
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