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Abstract — It is shown that first-order autonomous
space-invariant cellular neural networks (CNNs)
may exhibit a complex dynamic behavior (i.e. equi-
librium point and limit cycle bifurcation, strange
and chaotic attractors). The most significant limit
cycle bifurcation processes, leading to chaos, are in-
vestigated through the computation of the corre-
sponding Floquet’s multipliers and Lyapunov expo-
nents. It is worth noting that most practical CNN
implementations exploit first order cells and space-
invariant templates: so far no example of complex
dynamics has been shown in first-order autonomous
space-invariant CNNs.

1 Introduction

Cellular neural networks (CNNs) are analog dy-
namic processors, composed of identical nonlinear
dynamical systems (called cells), that are locally
interconnected. They have found important appli-
cations for the solution of several complex compu-
tational problems [1, 2, 3]. In most applications the
connections are specified through space-invariant
templates.

The mathematical model of a CNN consists in a
large set of coupled nonlinear differential equations,
that have been mainly studied through extensive
computer simulations.

For what concerns the dynamic behavior, CNNs
can be divided in two classes: stable CNNs, with
the property that each trajectory converges towards
an equilibrium point; unstable CNNs, that exhibit
at least one attractor, that is not a stable equili-
birum point. The stability results are summarized
in [4], whereas some examples of CNNs presenting
periodic limit cycles are shown in [5, 6].

Complex dynamics in CNNs (i.e. networks pre-
senting non-periodic, possibly strange, attractors)
have been so far observed only in four cases: a) non-
autonomous networks composed by two cells [7]; b)
autonomous CNNs described by space-variant tem-
plates and composed by three cells [8]; c) delayed
CNNs [9]; d) state-controlled CNNs [10]. So far, no
example of complex dynamics has been shown in
first-order autonomous CNNs, described by space
invariant templates.

The importance of investigating the complex dy-
namic behavior of first-order autonomous space-
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invariant CNNs relies on the fact that such a model
is exploited by most VLSI implementations [3]. The
identification of chaotic dynamics in these networks
might open the possibility of developing, on the ex-
isting CNN chips, innovative chaos-based applica-
tions.

In this paper we show that, for a class of two-
dimensional opposite-sign templates, complex dy-
namic occurs. Starting from a stable CNN, we in-
vestigate the equilibrium point bifurcation, leading
to periodic attractors. Then we study the limit
cycle bifurcation route to chaos, through the com-
putation of the corresponding Floquet’s multipliers
and Lyapunov exponents.

2 Space-invariant CNNs

We consider CNNs composed by N × M cells ar-
ranged on a regular grid and denote the position of
a cell with two indexes (k, l).

The network dynamics is described by the follow-
ing normalized state equations

ẋkl = − xkl +
∑

|n|≤r,|m|≤r

Anm yk+n,l+m

+
∑

|n|≤r,|m|≤r

Bnm uk+n,l+m + I (1)

where xkl and ukl represent the state-voltage and
the input voltage of cell (k, l). We assume that
the output voltage ykl is defined through the func-
tion fε(x) shown in Fig. 1, that is a smooth version
of the original Chua-Yang piecewise linear output
function. Function fε(x) depends on the parame-
ter ε; it presents the advantage of being continuous
with its first-order derivative and therefore to allow
an accurate analysis of limit cycle bifurcations.

Finally, r denotes the neighborhood of interac-
tion of each cell; Anm and Bnm are the elements of
the linear templates A and B , that are assumed to
be space-invariant, and I is the bias term.

We remark that the qualitative dynamics of the
above model is very similar to that of the models
adopted for VLSI implementation (see [3]).
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Figure 1: Comparison between the smooth function
fε(·) and the Chua-Yang piecewise linear function;
(a) ε = 1, 0.5; (b) zoom in the neighborhood of
xkl = 1, for ε = 0.2, 0.1, 0.05.

3 Complex dynamics

We consider an autonomous CNN composed by
3 × 3 cells, with zero boundary conditions and
zero input voltages, and described by the follow-
ing opposite-sign A template

A =




a a a
−a b a
−a a −a


 with b > 1; a > 0 (2)

We assume that the parameter ε, describing the
output function fε(·), is set to 0.1.

The above class of templates (2) exhibits the fol-
lowing property: by increasing a all the stable equi-
librium points disappear and therefore the network
should present at least a non-stationary attractor
(i.e. either a periodic or a non-periodic attractor).

We assume b = 1.6 and investigate the dynam-
ics of the network and the related bifurcation pro-
cesses, that can be observed by varying a.

For a = 0 the cells are not coupled and each of
them presents two stable equilibrium points, with
output voltage ykl = ±1 respectively. The whole
network exhibits 29 stable equilibrium points. We
have verified that, by increasing a, all the stable
equilibrium points undergo a saddle-node bifurca-
tion; for a = 0.575 all the stable equilibria dis-
appear and the CNN presents a stable limit cycle
(that will be denoted as c1). Such a cycle probably
originates through an heteroclinic bifurcation, since
its period increases and tends to a vertical asymp-
tot, as a approaches the value 0.575 (see Fig. 2).

We have computed the Floquet’s multipliers
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Figure 2: Limit cycle c1: time period versus a.
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Figure 3: Limit cycle c1: most significant FM, ver-
sus a.

(FMs) of cycle c1, by exploiting the algorithm re-
ported in [12]. Apart from the structural unitary
FM, only one FM is significantly different from zero
and therefore determines the limit cycle bifurca-
tion: such a FM is reported in Fig. 3. It is seen
that for a = 0.7154 this FM reaches the value 1,
i.e the limit cycle c1 disappear through tangent
bifurcation. The projection of the steady-state tra-
jectory onto the plane (x11, x12) is shown in Fig. 4,
for some values of the parameter a within the range
of existence of c1, i.e. a ∈ [0.6, 0.7154].

The simulation shows that for a > 0.65 another
stable limit cycle coexists with c1: such a cycle is
denoted with c2. The most significant FM asso-
ciated to c2 is reported in Fig. 5, as a function of
a. The analysis of the FMs shows that c2 originates
through a tangent bifurcation (as a approaches 0.65



III-91

−2.5 −2 −1.5 −1 −0.5 0
1

1.5

2

2.5

3

3.5

Limit cycle c
1

x
11

(t)

x 12
(t

)

−2.5 −2 −1.5 −1 −0.5 0
1

1.5

2

2.5

3

3.5

x
11

(t)

x 12
(t

)

a = 0.66
        

a = 0.70
        

Figure 4: Limit cycle c1: projection of the trajectory
onto the plane (x11, x12).
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Flip bifurcation: a = 0.785 

Figure 5: Limit cycle c2: most significant FM, ver-
sus a.

from the right, one FM approaches 1); by increas-
ing a, one FM equals −1 and this reveals that c2

undergoes a typical period doubling (flip) bifurca-
tion, for a = 0.785. As a result of this bifurcation,
c2 becomes unstable and a new cycle (denoted with
c4) of period approximately twice arises (see Fig. 6).
The main characteristics of these two cycles are re-
ported in Fig. 7.
By further increasing a, a sequence of period dou-

bling bifurcation leading to a chaotic attractor is
observed (see Fig.8, for a = 0.8). The Lyapunov
exponents associated to the cycles c2 (for a = 0.74)
and to the chaotic attractor, obtained for a = 0.8,
have been computed, by exploiting the software
tool described in [13]; they are reported in Table 1
and confirm that the chaotic attractor presents a
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Figure 6: Limit cycle c2: time period versus a.

positive Lyapunov exponents.
It is worth noting that, for the above CNN, the

system of equation (1) is invariant under the fol-
lowing coordinate transformations:

T →




z11 = −x33 z12 = x32 z13 = −x31

z21 = −x23 z22 = x22 z23 = −x21

z31 = −x13 z32 = x12 z33 = −x11

O → zij = −xij

(3)
It turns out that if the CNN presents an invariant

set l (i.e. limit cycles c1, c2, c4 and the chaotic at-
tractor of Fig. 8), then it should also exhibit: a) the
limit set obtained by applying to l the coordinate
transformation T (l); the two limit sets symmetric
to l and T (l) with respect to the origin, i.e. O(l)
and O[T (l)].

Lyapunov exponents
Limit cycle c2 Chaotic attractor

0.000833 0.036529
-0.016316 0.000034
-0.587443 -0.493471
-0.665539 -0.725800
-0.833612 -0.802559
-0.876804 -0.838617
-0.890424 - 0.869474
-0.931914 -0.919737
-0.989583 -0.995783

Table 1: Lyapunov exponents for the limit cycle c2

(a = 0.74) and the chaotic attractor, observed for
a = 0.8.
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Figure 7: Projection of the trajectory onto the plane
(x11, x12) for the limit cycles c2 (upper figure, a =
0.74) and the limit cycle c4 (lower figure, a = 0.79).

4 Conclusions

We have investigated the occurrence of complex dy-
namic behaviors (i.e. bifurcation processes, strange
and chaotic attractors) in first-order autonomous
space-invariant CNNs. There are some reasons for
carrying on this study: a) most CNN implemen-
tation exploits space-invariant templates; b) so far
no example of complex dynamics has been shown
in first-order autonomous space-invariant CNNs.
Hence, we are confident that the identification of
chaotic dynamics in such networks might open
the possibility of developing, on the existing CNN
chips, innovative chaos-based applications.
Starting from a first-order autonomous CNN, de-

scribed by a two-dimensional space-invariant tem-
plate, we have investigated the equilibrium point
bifurcation, leading to periodic attractors. Then
we have studied in detail the limit cycle bifurca-
tion route to chaos, through the computation of the
corresponding Floquet’s multipliers and Lyapunov
exponents.
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