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a b s t r a c t

We consider normalized average edge betweenness of a network as a metric of network
vulnerability. We suggest that normalized average edge betweenness together with is rel-
ative difference when certain number of nodes and/or edges are removed from the network
is a measure of network vulnerability, called vulnerability index. Vulnerability index is
calculated for four synthetic networks: Erd}os–Rényi (ER) random networks, Barabási–
Albert (BA) model of scale-free networks, Watts–Strogatz (WS) model of small-world net-
works, and geometric random networks. Real-world networks for which vulnerability
index is calculated include: two human brain networks, three urban networks, one collab-
oration network, and two power grid networks. We find that WS model of small-world net-
works and biological networks (human brain networks) are the most robust networks
among all networks studied in the paper.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

In everyday life we are surrounded with complex networks; examples include social networks (collaboration networks),
technological networks (communication networks, the Internet, power grids), information networks (the World Wide Web,
language networks), biological networks (protein–protein interaction networks, neural networks, ecological networks) and
etc. A central issue in the analysis of complex networks is the assessment of their robustness and vulnerability. Different
approaches to address network robustness and vulnerability have recently been proposed by research community. The first
approach is related to structural robustness [1–5]: how different classes of network topologies are affected by the removal of
a finite number of links and/or nodes. It was concluded that the more heterogeneous a network is in terms of, e.g., degree
distribution, the more robust it is to random failures, while, at the same time, it appears more vulnerable to deliberate at-
tacks on highly connected nodes. In addition, the occurrence of blind spots (i.e. isolated nodes) can be of great interest when
studying structural robustness in applications such as sensor networks. Using the percolation framework, this phenomenon
is investigated in [6]. The second approach concerns dynamical robustness [7–10]. For networks supporting the flow of a
physical quantity, the removal of a node or link will cause the flow to redistribute with the risk that some other nodes or
links may be overloaded and failure prone. Hence, a triggering event can cause a whole sequence of failures due to overload,
and may even threaten the global stability of the network. Such behavior is termed cascading failure.

In general, the vulnerability of complex networks can be either node or edge vulnerability. One method of measuring
node vulnerability is proposed in [11]. Latora and Marchiori measure the vulnerability of a node V(i) as relative drop in per-
formance after removal of the ith node together with all the edges connected to it. Then they argue that the maximal value V
of V(i) over all i corresponds to the network vulnerability. As an addition to this, authors in [12] introduce an additional
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parameter called the relative variance h. This parameter is a measure of the fluctuation level and it is used to describe the
hierarchical properties of the network, and thus its vulnerability.

In this paper we consider the normalized average edge betweenness as a metric for network vulnerability. Recently a
multi-scale measure for vulnerability of a graph is suggested by Boccaletti and his co-workers in [13]. In special case, when
the multi-scale coefficient equals 1, it reduces to the average edge betweenness. We discuss relations of this metric to some
graph characteristics. We also investigate how the normalized average edge betweenness fluctuates when certain nodes or
edges are removed from the network. We measure the vulnerability of four synthetic networks: random (Erd}os–Rényi) net-
work, geometric random network, scale-free network, and small world network. Finally, we measure the vulnerability of dif-
ferent real world networks: the Erd}os collaboration network, logical network of the brain, physical network of the brain, and
EU and US power grid networks. The same analysis is also carried out for three urban transport networks: Turin’s, Milan’s
and London’s road network.

The paper is organized as follows. Section 2 introduces a measure of network vulnerability called vulnerability index. In
Section 3 we discuss vulnerability index for the synthetic networks. Section 4 summarizes the results of vulnerability anal-
ysis of real networks. Section 5 concludes this paper.

2. Network vulnerability

In this paper we consider networks that can be modeled as simple graphs. A graph is an ordered pair G = (V,E) comprising
a set V of vertices or nodes together with a set E of edges or lines, which are 2-element subsets of V. A simple graph is an
undirected graph that has no self-loops and no more than one edge between any two different vertices. Average edge
betweenness of the graph G is defined as [13]:

bðGÞ ¼ 1
jEj
X
l2E

bl; ð1Þ

where jEj is the number of the edges, and bl is the edge betweenness of the edge l, defined as:

bl ¼
X
i–j

nijðlÞ
nij

; ð2Þ

where nij(l) is the number of geodesics (shortest paths) from node i to node j that contain the edge l, and nij is the total num-
ber of shortest paths. The average edge betweenness of graph G is related to the characteristic path length L(G) as [13]:

bðGÞ ¼ NðN � 1Þ
2jEj LðGÞ; ð3Þ

where N is the number of nodes in the graph.
Recently a multi-scale measure for vulnerability of a graph is suggested in [13]:

bpðGÞ ¼
1
jEj
X
l2E

bp
l

" #1=jpj

ð4Þ

for each value of p > 0. In order to compare two networks G and G
0
, one first computes b1. If b1(G) < b1(G

0
), then G is more

robust that G
0
. On the other hand, if b1(G) = b1(G

0
), then one takes p > 1 and computes bp until bp(G) – bp(G

0
). For typical (both

synthetic and real) graphs b1(G) – b1(G
0
), so in the following we adopt b1(G) = b(G) as a measure of vulnerability. From (3),

even though L(G) and b(G) can be interchangeably used to describe the vulnerability of the network as a whole, we have cho-
sen average edge betweenness because when computing b(G), we can gather information on which edge carries the most of
the network vulnerability. Additionally, this measure can be also extended for weighted and directed graphs (not considered
in this paper).

We first evaluate b(G) for some particular networks. A complete graph is a simple graph in which every pair of distinct
vertices is connected by an edge. The complete graph on N vertices has N(N � 1)/2 edges. For a complete graph, we have
b(Gcomplete) = 1. A path graph is a particularly simple example of a tree, namely one which is not branched at all, that is, con-
tains only nodes of degree two and one. In particular, two of its vertices have degree 1 and all others (if any) have degree 2.
For a path graph with N nodes, jEj = N � 1, and therefore:

bðGpathÞ ¼
NðN þ 1Þ

6
: ð5Þ

It is easy to see that b(Gcomplete) 6 b(G) 6 b(Gpath). As a consequence, we can define normalized average edge betweenness of a
network as:

bnorðGÞ ¼
bðGÞ � bðGcompleteÞ

bðGpathÞ � bðGcompleteÞ
¼ bðGÞ � 1

NðNþ1Þ
6 � 1

: ð6Þ
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Clearly 0 6 bnor(G) 6 1; if normalized average edge betweenness is close to 0 it means that the network is more robust, when
is close to 1, then network is more vulnerable.

We define two quantities related to average edge betweenness, namely relative difference of the average edge between-
ness when a finite number of nodes are removed from the network as

DnodeðGÞ ¼
bnorðG0Þ � bnorðGÞ

bnorðGÞ
; ð7Þ

where G
0
= (Vn{v1,v2, . . . ,vm},EnEv) is graph obtained from G by removing nodes v1,v2, . . . ,vm 2 V and all edges incident to the

nodes v1,v2, . . . ,vm (the set Ev). In a similar way, we define relative difference of the average edge betweenness when a finite
number of edges are removed from the network as

DedgeðGÞ ¼
bnorðG0Þ � bnorðGÞ

bnorðGÞ
; ð8Þ

where G
0
= (G,En{e1,e2, . . . ,en}) is graph obtained from G by removing edges e1,e2, . . . ,en 2 E. When using Eqs. (7) and (8) we

assume that both networks G and G
0
are connected. There are two questions to be addressed when using Eqs. (7) and (8). The

first one is how to choose nodes and edges to be removed? When removing a node (or an edge) from a network, one can
remove a random node (edge) or a node which is the highest ranking node according to some ranking method, such as: Page-
Rank [14], node degree, and node betweenness, or edge betweenness, when an edge is removed. The second question is how
small or large the number of removed nodes (edges) should be? If m, n are small (for example, m = 1 and n = 1), then the
relative differences Dnode and Dedge could be vary small numbers (statistically insignificant). On the other hand, for large
m and n the network can be disconnected.

We think that in order to measure the vulnerability of a network G one metric is not sufficient. Thus, the main contribu-
tion of work is that we propose the triple (bnor(G),Dnode(G),Dedge(G)) as a measure for the robustness and/or vulnerability of a
network G. Thus, for example, the network is robust when all three quantities bnor, Dnode, and Dedge are small. We call the
triple (bnor,Dnode,Dedge) vulnerability index of the network.

3. Vulnerability index for synthetic networks

In this section we discuss vulnerability of several synthetic networks.

� Erd}os Rényi (ER) random networks – The random network of Erd}os and Rényi is a prototypical model for complex net-
works. An ER network with N nodes is constructed by linking each pair of nodes with the probability b/[(N � 1)/2], or by
adding bN links between randomly selected pairs of nodes, where the link density is given by b and the degree distribu-
tion follows the Poisson distribution with the mean degree < k > = 2b. For ER graphs the probability that a degree of a cer-
tain node will have large deviation from the average value is exponentially small. For the characteristic path length of the
random ER graph, from [15], we have L(G) � lnN/ln < k > . Therefore, the average edge betweenness for the ER graph can
be estimated as (for large N):

bðGERÞ �
N

< k >
lnðNÞ

lnð< k >Þ :

� Geometric random networks (GR) – GR networks are characterized by nodes that are randomly distributed in the space,
and are connected only to the nodes in their proximity [16]. This topology is suitable for sensor networks and its struc-
tural robustness is studied in [17] by finding the critical point for the occurrence of blind spots. We adopt the following
algorithm for the generation of a geometric random network, with average node degree <k>. We generate the network on
2D space, i.e. nodes are randomly scattered along a square terrain of 1 m2 and their connectivity radius is related to the
average node degree <k> and the number of nodes N:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
< k >

Np

r
: ð9Þ

Then if the network is connected, the process finishes. If not, the giant component is found and the nodes which do not
belong to the giant component are again randomly scattered. The process finishes when the giant component includes all
the nodes in the network.

� Small-world networks – We use the Watts–Strogatz (WS) model as defined in [15] for generating the networks. The algo-
rithm uses a starting ring lattice to construct a small-world network. In a ring lattice each node has 2K neighbors, K in the
clockwise and K in the anti-clockwise direction. Each edge is rewired with probability /, not allowing self-loops or multi-
ple edges between nodes. For the numerical simulations in this paper we use / = 0.1 and K = 6. For average edge between-
ness of WS networks we have

bðGWSÞ � bðGERÞ �
N

< k >
lnðNÞ

lnð< k >Þ : ð10Þ
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� Scale-free networks – The original BA algorithm as given in [18] is used to construct scale-free networks. One starts from
a seed of M0 connected nodes and adds a new node with M 6 M0 links at each step according to the preferential attach-
ment rule. Each new node i is connected to M of the existing nodes with a probability:

pi ¼
kiPN

j¼1
kj

; ð11Þ

where ki is the degree of the node i and kj of node j (j = 1, . . . ,N). The parameters M0 and M are chosen such that M0 = 4 and
M = 3. For the Barabási–Albert (BA) scale-free graph the characteristic path length [19] is estimated to L(G) � ln(N)/ln(ln
(N)), thus,

bðGBAÞ �
ðN � 1Þ
< k >

lnðNÞ
lnðlnðNÞÞ : ð12Þ

The vulnerability and robustness of networks are considered for four different network classes: random ER network, geo-
metric random (GR) network, WS small-world network, and BA scale-free network. For all networks, the number of nodes in
the network is N = 500 and the average node degrees < k > of the networks is close to 6. The average clustering coefficient
for the ER network is 0.014, the GR network has an average clustering coefficient of 0.627, the coefficient for the WS small
world network is 0.447, and BA scale-free network has 0.055. Before the removal of nodes and/or edges, all considered net-
works are connected.

We first consider the structural robustness of networks: how networks are affected by the removal of a finite number of
nodes and/or edges. More precisely, we ask the question: how many networks are disconnected when a finite number of
nodes (or edges) are removed? We consider 100 network samples for each network class, and remove 10 nodes with the
highest PageRank scores. The results are: for BA networks 70% are disconnected, for WS networks 0% are disconnected,
for GR networks 50% are disconnected, and for ER networks 20% are disconnected. However, when 10 edges with the highest
edge betweenness are removed from the network, the results are: for BA and WS networks the percent of disconnected net-
works is 0, for ER networks 80% are disconnected, and for GR networks 90 out of 100 networks are disconnected.

Next we consider the dynamical robustness of networks. We first calculate bnor(G). Then Dnode(G) is calculated when 10
the most important nodes (with the highest PageRank scores) are removed from each network. Finally, we calculate Dedge(G)
for different network classes, when five the most important edges (with the highest edge betweenness) are removed from
the network. The results are shown in Fig. 1 and the values of the vulnerability index are given in Table 1.

One may conclude that for BA network, bnor(GBA) has the smallest value, but Dnode(GBA)) has the largest value among all
four network classes (for BA network, when 2% of nodes with highest PageRank scores are removed, the average edge
betweenness increases 16%). On the other hand, the initial GR network is the most vulnerable but its average edge between-
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Fig. 1. Dynamical robustness of synthetic networks.
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ness does not increase too much when a finite number of nodes are removed (by removing 2% of nodes, the average
edge betweenness increases only 0.4%). Fig. 2 shows the relative difference of the average edge betweenness when a
certain number of nodes are removed (using PageRank). Similar results are obtained using node degree and node
betweenness as methods of ranking the nodes. Moreover, GR network shows the largest increase of the average edge
betweenness, while ER network shows the smallest increase of the average edge betweenness when 5 of the edges
are removed from the network. Fig. 3 shows the relative difference of average edge betweenness when a certain number
of edges are removed (using edge betweenness) from the network. Note that when six edges are removed from the GR
network, it becomes disconnected.

Finally, we investigate how normalized average edge betweenness depends on certain parameters of the proposed syn-
thetic networks. In particular, Fig. 4 shows relative difference of the average edge betweenness versus the parameters K and
M of the WS and BA models, respectively. From Fig. 4 we can see that normalized average edge betweenness decreases expo-
nentially for both networks and approaches 0 (the normalized average edge betweenness of the fully connected network).
For the WS model the mean degree K is in the interval between 3 and 13. For the BA model we changed the number of the
connections M that a new node has in the range between 1 and 13.

4. Vulnerability index for real networks

In this section we consider several real-world networks.

� Human brain network – It represents the structural connectivity of the entire human brain. The data are obtained by
a diffusion magnetic resonance imaging (MRI) scan [20]. The network has two layers: physical and logical. The logical
layer consists of connections in the gray matter in the brain, while the physical layer reflects the axonal wiring used
to establish the logical connections. The logical brain network (LB) is consisted of 1013 nodes and 30,738 edges
whilst the average node degree is 30.343 and the average clustering coefficient is 0.456. The physical brain network
(PB) is larger and it has 4445 nodes and 41,943 edges whilst the average node degree is 9.436 and the average clus-
tering coefficient is 0.373.
� US power grid network – US power grid (USPG) network is provided in [21]. This network has 4941 nodes and 13,188

edges. The average node degree is 2.669 and the clustering coefficient is 0.107.

Table 1
Dynamical robustness of synthetic networks.

bnor(G) Dnode(G) Dedge(G)

ER 0.0441 0.025 0.002
WS 0.0655 0.01 0.0058
BA 0.0388 0.16 0.0038
GR 0.175 0.004 0.0105
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Fig. 2. Relative difference of the average edge betweenness after a finite number of nodes are removed (using PageRank).
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� Collaboration network – As a collaboration network, we consider a network whose edges are the collaboration between
Paul Erd}os and other mathematicians. Erd}os network [21] has 472 nodes and 2628 edges (collaborations). Additionally,
the average node degree for this network is 5.568 and the clustering coefficient is 0.347.
� Urban transport networks – The transport networks are focused on the urban street networks in the towns: Turin, Milan

and London. The urban network for Milan consists of 21,553 nodes and 29,980 edges (roads). The average node degree is
1.391 and the average clustering coefficient is 0.0231. The Turin network consists of 18,147 nodes connected with 26,120
edges. In addition, the average node degree for this network is 1.439 and the average clustering coefficient is 0.0193. The
London network has 8518 nodes and 15,495 edges. It has average node degree of 1.819 and average clustering coefficient
of 0.0794.
� EU power grid network – The experimental dataset contains the electricity lines above 200 kV grouped by disconnected

regions: Main Europe, Nordic Countries, Ireland, and UK. In our simulations only region Main Europe is analyzed. For this
networks, the number of nodes is 4335 and the network has 11,102 edges. The average node degree is equal to 2.561 and
the average clustering coefficient is equal to 0.0508.
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Fig. 4. Normalized average edge betweenness WS and BA networks versus K and M.
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Fig. 3. Relative difference of the average edge betweenness after a finite number of edges are removed (using edge betweenness).
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We calculate bnor(G), Dnode(G), and Dedge(G) for all networks. The relative difference Dnode(G) is calculated when 10 nodes
with the largest PageRank scores are removed from the network. The relative difference Dedge(G) is calculated when 30 edges
with the largest edge betweenness are removed from the network. The results are shown in Fig. 5 and the values of the vul-
nerability index are given in Table 2. Two networks with the largest normalized average edge betweenness bnor are EC and Lo,
two networks with the largest Dnode are EC and EUPG, and two networks with the largest Dedge are USPG and Mi. No data in
the table means that the corresponding network is disconnected.

It is interesting to see that the EUPG is more vulnerable than USPG, when nodes are removed. In the case when edges are
removed the EUPG shows bigger robustness. This might tell that the two power grid networks have different structure. Of
course, we only investigate the vulnerability from structural point of view. The results might change if the dynamic is con-
sidered. In addition, the vulnerability triple also depends on the method used for building this networks.

Considering vulnerability index as a measure of network vulnerability, we may conclude that the most robust real-world
networks are biological networks represented here with PB and LP networks. The increase of the normalized average edge
betweenness when a certain number of edges are removed (using edge betweenness) is shown in Fig. 6.

Fig. 7 presents the trendline of the relative increase of the edge vulnerability of the EU power grid, when some of the
edges with the highest edge betweenness are removed. From Fig. 7 one can see that by removing 100 of the most important
edges the vulnerability index increases by around 7%. In addition, the vulnerability increases with the same trend when
removing from 5 to 70 edges, then in the range between 70 and 100 edges it increases with a smaller rate. From this analysis
we might conclude that the first 70 edges with the highest edge betweenness value influence the vulnerability of the EU
power grid the most.

5. Conclusion

In this paper we have suggested that normalized average edge betweenness together with its relative difference when
certain number of nodes and/or edges are removed from the network forms a triple that can be used as a measure of network
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Fig. 5. Dynamical robustness of real networks.

Table 2
Dynamical robustness of real networks.

bnor(G) Dnode(G) Dedge(G)

PB 0.0125 0.0011 0.002
LB 0.0165 0.0035 0.001
EC 0.042 0.1282 –
Lo 0.0366 0.0067 0.012
Tu 0.0040 – 0.03
Mi 0.0044 – 0.025
USPG 0.0231 0.0010 0.040
EUPG 0.0001 0.0801 0.004
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vulnerability (called vulnerability index). WS model of small-world network appears to be the most robust network among
all synthetic networks studied in the paper. This conclusion is due to the fact that this model shows highest structural
robustness when nodes or edges are removed form the graph and also the vulnerability index, as a triple, is relatively
low in respect to the other synthetic networks (only when removing edges it showed a little bit higher vulnerability than
the scale-free network), which means that the dynamical robustness is also high for this model (this results comply with
results in [22]). Using the same analysis, one might say that the biological networks (human brain networks) are the most
robust networks among all real-world networks studied in the paper.
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