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nologies. CNNs are also suitable to be involved in DNA microarray
processing from different points of view. In fact, the analysis to be
performed faces with a matrix of DNA sites, both in the case of flu-
orescence images, and in all the other cases in which hybridization re-
sults are read out on-site using electrical, optical or chemical methods.
Rather, in the latter cases CNN technology gives the best way to ana-
lyze analog information in real time, as soon as the hybridization results
are obtained from the chemical process, so avoiding any data conver-
sion. The possibility to build CNN chips directly connected with a DNA
microarray opens the way to powerful systems-on-a-chip for real time
diagnosis.
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Complex Dynamic Phenomena in Space-Invariant Cellular
Neural Networks

M. Biey, M. Gilli, and P. Checco

Abstract—It is shown that first-order autonomous space-invariant
cellular neural networks (CNNs) may exhibit a complex dynamic behavior
(i.e., equilibrium point and limit cycle bifurcation, strange and chaotic
attractors). The most significant limit cycle bifurcation processes, leading
to chaos, are investigated through the computation of the corresponding
Floquet’s multipliers and Lyapunov exponents. It is worth noting that
most practical CNN implementations exploit first-order cells and space-in-
variant templates: so far no example of complex dynamics has been shown
in first-order autonomous space-invariant CNNs.

Index Terms—Cellular neural networks, chaotic dynamics, complex dy-
namics.

I. INTRODUCTION

Cellular neural networks (CNNs) are analog dynamic processors,
that have found several applications for the solution of complex
computational problems [1]–[5]. A CNN can be described as a two-
or three-dimensional array of identical nonlinear dynamical systems
(called cells), that are locally interconnected. This property has
allowed the realization of several high-speed VLSI chips [6], [7]. In
most applications the connections are specified through space-in-
variant templates (that consist of small sets of parameters identical for
all the cells.)

The mathematical model of a CNN consists in a large set of coupled
nonlinear differential equations, that have been mainly studied through
extensive computer simulations.

For what concerns the dynamic behavior, CNNs can be divided in
two classes: stable CNNs, with the property that each trajectory (with
the exception of a set of measure zero) converges toward an equilibrium
point; unstable CNNs, that exhibit at least one attractor, that is not a
stable equilibrium point. The stability results are summarized in [8],
whereas some examples of CNNs presenting periodic limit cycles are
shown in [9], [10].

Complex dynamics in CNNs (i.e., networks presenting nonperiodic,
possibly strange, attractors) have been so far observed only in four
cases: a) nonautonomous networks composed by two cells [11]; b) au-
tonomous CNNs described by space-variant templates and composed
by three cells [12]; c) delayed CNNs [13]; d) state-controlled CNNs
[14]. So far, no example of complex dynamics has been shown in first-
order autonomous CNNs, described by space invariant templates.

The importance of investigating the complex dynamic behavior of
first-order autonomous space-invariant CNNs relies on the fact that
such a model is exploited by most VLSI implementations [6]. The iden-
tification of chaotic dynamics in these networks might open the possi-
bility of developing, on the existing CNN chips, innovative chaos-based
applications.

In this brief we firstly consider the original Chua–Yang model and
show that for a class of two-dimensional opposite-sign templates, com-
plex dynamic occurs. Starting from a stable CNN, we investigate the
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equilibrium point bifurcation, leading to periodic attractors. Then we
study the limit cycle bifurcation route to chaos, through the computa-
tion of the corresponding Floquet’s multipliers (FMs) and Lyapunov
exponents. Then we consider the CNN modified model described in
[15], that is more suitable for VLSI implementation: we show that also
this model exhibits complex dynamic phenomena.

II. SPACE-INVARIANT CNNS

We consider CNNs composed byN�M cells arranged on a regular
grid. We denote the position of a cell with two indexes(k; l) with the
assumption that cell (1, 1) is located in the upper left corner and cell
(N; M) is located in the lower right corner.

The network dynamics is described by the following normalized
state equations [3]

_xkl = �xkl +
jnj�r; jmj�r

Anmyk+n; l+m

+
jnj�r; jmj�r

Bnmuk+n; l+m + I (1)

wherexkl andukl represent the state-voltage and the input voltage of
cell (k; l); ykl is the output voltage;r denotes the neighborhood of
interaction of each cell;Anm andBnm are the elements of the linear
templatesAAA andBBB, that are assumed to be space-invariant, andI is the
bias term.

In the original Chua–Yang model [1] it is assumed that the output
voltageykl depends on the state-voltagexkl through the following
piecewise-linear functionfY (�):

ykl = fY (xkl) =
1

2
(jxkl + 1j � jxkl � 1j): (2)

The function above is Lipschitz, but does not admit of a continuous
derivative atxkl = �1. Such a critical behavior can cause some nu-
merical problems to the limit cycle bifurcation analysis, that in most
cases requires to evaluate the global derivative of functionfY (�) [17].
For this reason, we assume that the relationship between the output and
the state voltage is defined through the following functionf"(�) that de-
pends on the parameter"

f"(x) =

�1; x < �(1 + ")

1

4"
[x2 + 2(1 + ")x+ (1� ")2]; jx + 1j < "

x; jxj < (1� ")

�
1

4"
[x2 � 2(1 + ")x+ (1� ")2; ] jx � 1j < "

1; x > 1 + ".
(3)

It is easily seen thatf" is Lipschitz and also admits of a continuous
first-order derivative [i.e., it belongs to the classC1(�1; 1)]. Func-
tion f" differs fromfY only in the sub-intervals]�(1 + "),�(1� ")[
and](1� "), (1 + ")[. In addition we note that: 1) For small values of
the parameter" the two functionsf" andfY cannot be distinguished
(see Fig. 1); 2) In real circuits, piecewise-linear characteristics cannot
be exactly realized; thereforef" represents the best approximation of
the actual output functions implemented in those VLSI realization, that
adopt the original Chua–Yang model [7]; 3) extensive simulations have
shown that for" � 0:15, the qualitative dynamics of the two models
(i.e., usingfY or f") is identical.

Fig. 1. Comparison between the smooth functionf (�) and the
piecewise-linear functionf (�). (a)" = 1, 0.5. (b) zoom in the neighborhood
of x = 1, for " = 0:2, 0.1, 0.05.

Fig. 2. First-order derivative of the smooth functionf (�) for " = 0:5, 0.2,
0.1. Note that it is continuous atx = �1.

The analytical expression of the continuous first-order derivative of
f"(x) is reported below; the graphic is shown in Fig. 2

f
0
"(x) =

0; x < �(1 + ")

1

2"
[x+ (1 + ")]; jx+ 1j < "

1; jxj < 1� "

�
1

2"
[x � (1 + ")]; jx� 1j < "

0; x > 1 + ":

(4)

We will exploit the modified model introduced above for studying
and detecting the most significant bifurcation processes occurring in
space-invariant CNNs with first-order cells. Then we will show that
similar phenomena can also be observed if different models, more suit-
able for VLSI implementations, are used (see [15]).



342 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 3, MARCH 2002

Fig. 3. Number of stable equilibrium points as a function ofa.

III. COMPLEX DYNAMICS

We consider an autonomous CNN composed by 3� 3 cells, with
zero boundary conditions and zero input voltages, and described by
the following opposite-signAAA template

AAA =

a a a

�a b a

�a a �a

with b > 1; a > 0: (5)

We assume that the output function is modeled by (3) with" = 0:1.
We note that for such a CNN, the system of equations (1) is invariant

under the following coordinate transformation:

T !

z11 = �x33 z12 = x32 z13 = �x31

z21 = �x23 z22 = x22 z23 = �x21

z31 = �x13 z32 = x12 z33 = �x11:

(6)

In addition the system of equations (1) is odd; hence it is also in-
variant under the transformation

O ! zij = �xij : (7)

It turns out that if the CNN presents an invariant limit setl (i.e.,
an equilibrium point, a limit cycle, a chaotic attractor), then it should
also exhibit: a) the limit set obtained by applying tol the coordinate
transformationT (l); b) the two limit sets symmetric tol andT (l) with
respect to the origin, i.e.,O(l) andO[T (l)].

The above class of templates (5) exhibits the following property:
by increasinga all the stable equilibrium points disappear; since each
trajectory is bounded, the network should present at least one attractor,
that is not an equilibrium point (i.e., either a periodic or a nonperiodic
attractor).

We assumeb = 1:6 > 1 and investigate the dynamics of the network
and the related bifurcation processes, that can be observed by varying
the parametera.

For a = 0 the cells are not coupled and each of them presents two
stable equilibrium points, with output voltageykl = �1, respectively.
The whole network exhibits 29 stable equilibrium points. We have ver-
ified that, by increasinga, all the stable equilibrium points undergo
a saddle-node bifurcation. The results are summarized in Fig. 3, that
reports the number of stable equilibrium points as a function of the
template parametera: it is seen that the first saddle-node bifurcation
occurs fora = 0:075, whereas the last one occurs fora = 0:575. For

Fig. 4. Limit cyclec : time period versusa.

Fig. 5. Limit cyclec : most significant FM, versusa.

a � 0:575 the network does not present any stable equilibria; the sim-
ulations show that a stable limit cycle emerges (it will be denoted as
c1). Such a cycle probably originates through an heteroclinic bifurca-
tion, since its period increases and tends to a vertical asymptote, asa

approaches the value 0.575 (see Fig. 4).
We have computed the Floquet’s multipliers (FMs) of cyclec1, by

exploiting the algorithm reported in [17] [that requires to compute the
first-order derivative of the output functionf"(�)]. Apart from the struc-
tural unitary FM, only one FM is significantly different from zero and
therefore determines the limit cycle bifurcation: such a FM is reported
in Fig. 5 as a function ofa. It is seen that fora = 0:7154 this FM
reaches the value 1, i.e., the limit cyclec1 disappear through tangent
bifurcation. The projection of the steady-state trajectory onto the plane
(x11; x12) is shown in Fig. 6, for some values of the parametera within
the range of existence ofc1, i.e., a 2 [0:575; 0:7154]. It is worth
noting, that, according to the coordinate transformations (6) and (7),
for a 2 [0:575; 0:7154], three other cycles coexists, i.e.,T (c1),O(c1)
andO[T (c1)]. Such limit cycles present the same properties ofc1.

The simulation shows that fora > 0:65 another stable limit cycle
emerges: such a cycle is denoted withc2. The most significant FM
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Fig. 6. Limit cyclec : projection of the trajectory onto the plane(x ; x ).

Fig. 7. Limit cyclec : most significant FM, versusa.

Fig. 8. Limit cyclec : time period versusa.

Fig. 9. Limit cyclec : projection of the trajectory onto the plane(x ; x );
steady-state waveforms ofx (t) for a = 0:74.

Fig. 10. Limit cyclec : projection of the trajectory onto the plane(x ; x );
steady-state waveforms ofx (t) for a = 0:79.

associated toc2 is reported in Fig. 7, as a function ofa. The analysis
of the FMs shows thatc2 originates through a tangent bifurcation (asa

approaches 0.65 from the right, one FM approaches 1); by increasing
a, one FM approaches�1 and this reveals thatc2 undergoes a typical
period doubling (flip) bifurcation, fora = 0:785. As a result of this
bifurcation,c2 becomes unstable and a new cycle (denoted withc4) of
period approximately twice arises (see Fig. 8). The main characteristics
of these two cycles are reported in Figs. 9 and 10.

By further increasinga, a sequence of period doubling bifurcation
leading to a chaotic attractor is observed (see Fig. 11, fora = 0:8).
The Lyapunov exponents associated to the cyclesc2 (for a = 0:74)
and to the chaotic attractor, obtained fora = 0:8, have been computed,
by using the algorithm presented in [18, Ch. 3] and exploiting INSITE,
the software tool described in [19]. The program output is reported in
Table I. In both the cases (limit cyclec2 and chaotic attractor), INSITE
explicitly suggests that (according to the used internal tolerance) the
Lyapunov exponent with the lowest absolute value be assumed zero.
These results confirm the existence of a limit cycle (one zero Lyapunov
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Fig. 11. Chaotic attractor, originated through the bifurcation of cyclec :
projection of the trajectory onto the plane(x ; x ) for a = 0:8.

TABLE I
LYAPUNOV EXPONENTS FOR THELIMIT CYCLE c (a = 0:74) AND THE

CHAOTIC ATTRACTOR, OBSERVED FORa = 0:8

exponents) and of a chaotic attractor (one zero and one positive Lya-
punov exponents).

We note that, by applying the coordinate transformations (6) and (7),
in the rangea 2 [0:575; 0:7154], it is easily proved the existence of
three additional limit cycles i.e.,T (c1),O(c1) andO[T (c1)]. Similar
arguments are valid for the limit cyclesc2 andc4 and for the chaotic
attractor: this means that fora = 0:8 four chaotic attractors coexists in
the CNN state-space.

IV. M ODIFIED CNN MODEL FORVLSI IMPLEMENTATION

In this section we will show that a strange attractor, very similar to
that of Fig. 11, also occurs for a CNN described by the modified model,
reported in [15], that is more suitable for VLSI implementation.

In order to have a Lipschitz function, we describe the VLSI model
[15], through the following state equations:

_xij = �xij � g(xij) +
jpj�r; jqj�r

Apqxi+p; j+q

+
jpj�r; jqj�r

Bpqui+p; j+q + I (8)

Fig. 12. Strange attractor in a CNN described by the modified VLSI model (8):
projection of the trajectory onto the plane(x ; x ) for a = 1:0 andb = 1:6.

where the nonlinear functiong(�) is defined as

g(xij) =

h(xij + 1); xij < �1

0; jxij j � 1

h(xij � 1); xij > 1

(9)

andh is assumed to be a positive real constant, large enough for ap-
proximating the nonlinear characteristic shown in [15, Fig. 4].

We consider a 3� 3 network, described by the space-invariant tem-
plate (5), withb = 1:6 andh = 1000. The simulation shows that the
CNN exhibits a strange attractor, reported in Fig. 12, fora = 1:0. The
strange attractor is rather similar to the chaotic attractor observed in
the classical model (see Fig. 11) with the only difference that the tra-
jectory is forced to remain into the unitary interval]�1; 1[. Note that
chaos does not occur for the same value ofa, because the two models
(9) and (3) are described by a rather different set of parameters.

We have also verified that, due to the space-invariant structure, the
existence of strange attractors does not depend on the number of cells
N �M , for both the Chua–Yang and the VLSI model.

V. CONCLUSIONS

We have investigated the occurrence of complex dynamic behaviors
(i.e., bifurcation processes, strange and chaotic attractors) in first-order
autonomous space-invariant CNNs. There are some reasons for car-
rying on this study: a) most CNN implementations exploits space-in-
variant templates; b) so far no example of complex dynamics has been
shown in first-order autonomous space-invariant CNNs. Starting from
a first-order autonomous CNN, described by a 2-D space-invariant tem-
plate, we have investigated the equilibrium point bifurcation, leading
to periodic attractors. Then, we have studied in detail the limit cycle bi-
furcation route to chaos, through the computation of the corresponding
Floquet’s multipliers and Lyapunov exponents.

We are confident that the identification of chaotic dynamics in such
networks might open the possibility of developing, on the existing CNN
chips, innovative chaos-based applications.
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Generalized State-Space Observers for Chaotic
Synchronization and Secure Communication

M. Boutayeb, M. Darouach, and H. Rafaralahy

Abstract—In this brief, a simple and useful technique for both synchro-
nization and secure communication of chaotic systems is developed. The
proposed approach is based on generalized state space observer design
for a class of nonlinear systems. By means of regular transformations we
show that asymptotic stability is assured under mild conditions. To show
accuracy and high performances of the proposed method, the well-known
chaotic Lorentz system will be considered as an illustrative example.

Index Terms—Chaotic systems, observer-based approach, secure com-
munication, synchronization.

I. INTRODUCTION

Synchronization in chaotic systems has received a large attention
over the last decade. Since the pioneering work performed by Pecora
et al. in [1], several synchronization schemes have been developed, see
[8]–[10] just to mention few references. Observers based approach, in
particular, becomes one of the attractive technique largely investigated
in the recent research works [4], [6], [7], [12], [18]. Few results, how-
ever, have been established to deal with both synchronization and se-
cure communication [2], [3], [5], [13]. The problem to deal with con-
sists in injecting the information signal into the chaotic model and later,
the received signal should be processed in order to construct the mes-
sage. In [2], the authors use the Extended Kalman Filter based approach
in communication where the information signal to be estimated is as-
sumed to be slowly time varying. This assumption was also used in the
recent work [3] based on standard identification methods and nice reg-
ular transformations of some well-known chaotic systems.

In [13], the authors used an unknown input observer scheme for
synchronization and secure communication of linear discrete-time sys-
tems. Necessary and sufficient conditions for stability may be found in
previous works [19], [20] (in a stochastic context, see [21]). We notice,
however, that this approach can not be extended easily to nonlinear sys-
tems in particular when the information signals to be constructed are
injected nonlinearly into the model.

For a class of nonlinear systems, a recent and attractive approach
developed by Liaoet al. in [5], is built upon two steps. The first one
consists in computing the observer gain matrix for synchronization of
a message free chaotic system. After, the information signal is added
to the output signal and also injected linearly into the chaotic model
through the observer gain matrix previously computed.

In this contribution, that may be seen as a generalization of the
approach performed in [5], we investigate generalized nonlinear state
space observers based approach for both chaos synchronization and
secure communication. We introduce useful regular transformations to
establish mild conditions for asymptotic convergence. Performances
and easiness of implementation will be shown through the chaotic
Lorentz system.

In order to make clear our contribution, let us point out the main
differences with respect to the work of Liaoet al.[5]. First, we consider
chaotic systems with multiple outputs and multiple information signals
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