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nologies. CNNs are also suitable to be involved in DNA microarragomplex Dynamic Phenomena in Space-Invariant Cellular

processing from different points of view. In fact, the analysis to be Neural Networks
performed faces with a matrix of DNA sites, both in the case of flu-
orescence images, and in all the other cases in which hybridization re- M. Biey, M. Gilli, and P. Checco

sults are read out on-site using electrical, optical or chemical methods.

Rather, in the latter cases CNN technology gives the best way to ana-Ab i s sh hat f d ) )

lyze analog information in real time, as soon as the hybridization resultg stract—it Is shown that first-order autonomous space-invariant
. - o céllular neural networks (CNNs) may exhibit a complex dynamic behavior

are obtained fr_om the Ch_em'cal process, so avoiding any o_Iata CONYEE:, equilibrium point and limit cycle bifurcation, strange and chaotic

sion. The possibility to build CNN chips directly connected with a DNAattractors). The most significant limit cycle bifurcation processes, leading

microarray opens the way to powerful systems-on-a-chip for real tinfechaos, are investigated through the computation of the corresponding
diagnosis Floquet's multipliers and Lyapunov exponents. It is worth noting that

most practical CNN implementations exploit first-order cells and space-in-
variant templates: so far no example of complex dynamics has been shown
in first-order autonomous space-invariant CNNs.

Index Terms—Cellular neural networks, chaotic dynamics, complex dy-
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equilibrium point bifurcation, leading to periodic attractors. Then we 1
study the limit cycle bifurcation route to chaos, through the computz
tion of the corresponding Floquet's multipliers (FMs) and Lyapuno
exponents. Then we consider the CNN modified model described % °
[15], that is more suitable for VLS| implementation: we show thatalst s
this model exhibits complex dynamic phenomena.
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II. SPACE-INVARIANT CNNSs .
1.05 T T T
We consider CNNs composed Byx M cells arranged on a regular (b)
grid. We denote the position of a cell with two indeXeés [) with the s
assumption that cell (1, 1) is located in the upper left corner and Ce =
(N, M) is located in the lower right corner.
The network dynamics is described by the following normalizec
state equations [3]

0.95

1.05 1.1 1.15

Tpr = =2k + AnmYkdn, t4m
|n|<§n|<r et Fig. 1. Comparison between the smooth functigh(-) and the
== piecewise-linear functiofy (). (a)e = 1, 0.5. (b) zoom in the neighborhood
+ Z Bumthin. 14m +1 (1) ofap = 1,fore = 0.2,0.1, 0.05.

n|<r, [m|<r

wherezy; anduy; represent the state-voltage and the input voltage ¢
cell (k, 1); yx: is the output voltage; denotes the neighborhood of 1|
interaction of each celld,,,,, andB,,,, are the elements of the linear
templatesA andB, that are assumed to be space-invariant,faisdhe
bias term. o8r

In the original Chua—Yang model [1] it is assumed that the outpt
voltagey,; depends on the state-voltage; through the following
piecewise-linear functiorfy (-):

Yy = fy(em) = % (g + 1| = |zr = 1))- 2

The function above is Lipschitz, but does not admit of a continuoro-2 £=02
derivative atr,; = £1. Such a critical behavior can cause some nu
merical problems to the limit cycle bifurcation analysis, that in mos
cases requires to evaluate the global derivative of fungtiofn) [17]. ©
For this reason, we assume that the relationship between the output s s s ‘ :
the state voltage is defined through the following functfof) that de- - X
pends on the parameter

Fig. 2. First-order derivative of the smooth functign(-) for ¢ = 0.5, 0.2,
0.1. Note that it is continuous at., = +1.

-1, z < —(1+¢2)
1. . .
4—6[:;;2 +2(142)e + (1 —2)7, le +1] <= The analytical expression of the continuous first-order derivative of
folz) =14 & le] < (1—2) f-(z) is reported below; the graphic is shown in Fig. 2
1
_47[%2 —2(14+8)z+(1-2)2] |Je—-1]<=
{ & 2> 14e 0, r< —(14+¢)
. . | - . . ® ,l[.lf-l-(l-i-e)]. e +1]<e
Itis easily seen thaf. is Lipschitz and also admits of a continuous 2e '
first-order derivative [i.e., it belongs to the cla8$(—oc, ~)]. Func- fi(z) =141, 2] <1—¢ (4)
tion f. differs from fy- only in the sub-intervalb—(1 + <), — (1 — =)[ 1 ;
and](1 — &), (1 + £)[. In addition we note that: 1) For small values of % [z —(1+2) |o—-1f<=
the parameter the two functionsf. and fy- cannot be distinguished 0, x>14=.

(see Fig. 1); 2) In real circuits, piecewise-linear characteristics cannot

be exactly realized; therefore represents the best approximation of We will exploit the modified model introduced above for studying
the actual output functions implemented in those VLSI realization, thahd detecting the most significant bifurcation processes occurring in
adopt the original Chua—Yang model [7]; 3) extensive simulations haspace-invariant CNNs with first-order cells. Then we will show that
shown that for: < 0.15, the qualitative dynamics of the two modelssimilar phenomena can also be observed if different models, more suit-
(i.e., usingfy or f.) is identical. able for VLSI implementations, are used (see [15]).
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Fig. 4. Limit cyclec,: time period versus.

I1l. ComMPLEX DYNAMICS

1

Limit Cycle <,

We consider an autonomous CNN composed by 3 cells, with
zero boundary conditions and zero input voltages, and described | / |
the following opposite-sigad template Tangent bifurcation: a = 0.7154
08
a a a
A=|—-a b a with b > 1;a > 0. (5) 5 orr
—a a —a E_ o6k
We assume that the output function is modeled by (3) with 0.1. g osk
We note that for such a CNN, the system of equations (1) is invaria'g
under the following coordinate transformation: §- o4r
i
Z11 = —¥33 Z12 = T32 213 = —I31 0.3
T — < zo1 = —Fag 222 = T2 %23 = —21 (6) o2t
Z31 = —T13 232 = T12 233 = —T11. o1k
In addition the system of equations (1) is odd; hence it is also it 0
variant under the transformation
O — zij = —uij. ) Fig. 5. Limit cyclec;: most significant FM, versue.

It turns out that if the CNN presents an invariant limit édt.e.,
an equilibrium point, a limit cycle, a chaotic attractor), then it should > 0.575 the network does not present any stable equilibria; the sim-
also exhibit: a) the limit set obtained by applying/tthe coordinate ulations show that a stable limit cycle emerges (it will be denoted as
transformatior? (7); b) the two limit sets symmetric foand7 (1) with  ¢;). Such a cycle probably originates through an heteroclinic bifurca-
respect to the origin, i.eQ(l) andO[7 (1)]. tion, since its period increases and tends to a vertical asymptoie, as
The above class of templates (5) exhibits the following propertgpproaches the value 0.575 (see Fig. 4).
by increasing: all the stable equilibrium points disappear; since each We have computed the Floquet’'s multipliers (FMs) of cyeleby
trajectory is bounded, the network should present at least one attractaploiting the algorithm reported in [17] [that requires to compute the
that is not an equilibrium point (i.e., either a periodic or a nonperiodfast-order derivative of the output functigfa(-)]. Apart from the struc-
attractor). tural unitary FM, only one FM is significantly different from zero and
We assumé = 1.6 > 1 and investigate the dynamics of the networkherefore determines the limit cycle bifurcation: such a FM is reported
and the related bifurcation processes, that can be observed by varyingig. 5 as a function of. It is seen that forn = 0.7154 this FM
the parametex. reaches the value 1, i.e., the limit cyele disappear through tangent
Fora = 0 the cells are not coupled and each of them presents twdurcation. The projection of the steady-state trajectory onto the plane
stable equilibrium points, with output voltage; = +1, respectively. (x11, #12) isshownin Fig. 6, for some values of the parameteithin
The whole network exhibits’2stable equilibrium points. We have ver-the range of existence af, i.e.,a € [0.575, 0.7154]. It is worth
ified that, by increasing, all the stable equilibrium points undergonoting, that, according to the coordinate transformations (6) and (7),
a saddle-node bifurcation. The results are summarized in Fig. 3, thata € [0.575, 0.7154], three other cycles coexists, i.&.(c1), O(c1)
reports the number of stable equilibrium points as a function of tledO[7 (c:)]. Such limit cycles present the same properties, of
template parameter: it is seen that the first saddle-node bifurcation The simulation shows that far > 0.65 another stable limit cycle
occurs fora = 0.075, whereas the last one occurs foe= 0.575. For emerges: such a cycle is denoted with The most significant FM
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associated te- is reported in Fig. 7, as a function of The analysis
of the FMs shows that, originates through a tangent bifurcation (as
approaches 0.65 from the right, one FM approaches 1); by increasing
a, one FM approaches1 and this reveals that undergoes a typical
period doubling (flip) bifurcation, for = 0.785. As a result of this
bifurcation,c2 becomes unstable and a new cycle (denoted wyitlof
period approximately twice arises (see Fig. 8). The main characteristics
of these two cycles are reported in Figs. 9 and 10.

By further increasing:, a sequence of period doubling bifurcation
leading to a chaotic attractor is observed (see Fig. 11¢ fer 0.8).
The Lyapunov exponents associated to the cyeleor a« = 0.74)
and to the chaotic attractor, obtained doe 0.8, have been computed,
by using the algorithm presented in [18, Ch. 3] and exploiting INSITE,
the software tool described in [19]. The program output is reported in
Table I. In both the cases (limit cycte and chaotic attractor), INSITE
explicitly suggests that (according to the used internal tolerance) the
Lyapunov exponent with the lowest absolute value be assumed zero.
These results confirm the existence of a limit cycle (one zero Lyapunov
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Fig. 11. Chaotic attractor, originated through the bifurcation of cygle Fig.12. Strange attractorina CNN described by the modified VLSI model (8):
projection of the trajectory onto the plage, , 12) fora = 0.8. projection of the trajectory onto the plafe; ;. x12) fora = 1.0 andb = 1.6.

where the nonlinear functios(-) i fin
TABLE | ere the nonlinear functiog-) is defined as

LYAPUNOV EXPONENTS FOR THELIMIT CYCLE ¢ (@ = 0.74) AND THE

CHAOTIC ATTRACTOR, OBSERVED FORa = (.8 hwij +1), wij < -1

g(zi;) = {0, v <1 ©
Lyapunov exponents
Limit cycle ¢ | Chaotic attractor h(wi; — 1), xij >1

0.000833 0.036529 . -
-0.016316 0.000034 andh is assumed to be a positive real constant, large enough for ap-
-0.587443 -0.493471 proximating the nonlinear characteristic shown in [15, Fig. 4].
0.665539 -0.725800 We consider a % 3 network, described by the space-invariant tem-
-0.833612 -0.802559 plate (5), withb = 1.6 andh = 1000. The simulation shows that the
-0.876804 -0.838617 CNN exhibits a strange attractor, reported in Fig. 124fet 1.0. The
-0.890424 - 0.869474 strange attractor is rather similar to the chaotic attractor observed in
-0.931914 -0.919737 the classical model (see Fig. 11) with the only difference that the tra-
-0.989583 -0.995783 jectory is forced to remain into the unitary intenjal1, 1[. Note that

chaos does not occur for the same value ,dfecause the two models

(9) and (3) are described by a rather different set of parameters.
exponents) and of a chaotic attractor (one zero and one positive LyaWe have also verified that, due to the space-invariant structure, the
punov exponents). existence of strange attractors does not depend on the number of cells

We note that, by applying the coordinate transformations (6) and (#, x M, for both the Chua—Yang and the VLSI model.

in the ranger € [0.575, 0.7154], it is easily proved the existence of
three additional limit cycles i.eZ (c1), O(c1) andO[T (c1)]. Similar V. CONCLUSIONS
arguments are valid for the limit cycles andc, and for the chaotic
attractor: this means that far= 0.8 four chaotic attractors coexists in
the CNN state-space.

We have investigated the occurrence of complex dynamic behaviors
(i.e., bifurcation processes, strange and chaotic attractors) in first-order
autonomous space-invariant CNNs. There are some reasons for car-
rying on this study: a) most CNN implementations exploits space-in-
variant templates; b) so far no example of complex dynamics has been
shown in first-order autonomous space-invariant CNNs. Starting from

In this section we will show that a strange attractor, very similar t%flrst-orderautc_)nomqus CNN, descr_lpe(_:i by a2.-D space-mvananttgm-
that of Fig. 11, also occurs for a CNN described by the modified mod@2t€: We have investigated the equilibrium point bifurcation, leading
reported in [15], that is more suitable for VLSI implementation. to perl_odlc attractors. Then, we have studied |n_deta|l the limit cycle t_)n-

In order to have a Lipschitz function, we describe the VLSI mod rcation route to chaos, through the computation of the corresponding

. o loguet’s multipliers and Lyapunov exponents.
15], through the following state equations: ) . e . .
[15] ug wing quat We are confident that the identification of chaotic dynamics in such

networks might open the possibility of developing, on the existing CNN
chips, innovative chaos-based applications.

IV. MobDIFIED CNN MODEL FORVLSI | MPLEMENTATION

dij=—wij—g(wi)+ Y Apgiip, it
lpl<r, lal<r REFERENCES
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cal s’y'ls,’:lesr:lzl,z’l; Cﬁ‘: _sgg\g?/rcﬁ_tggl,kgg?rltc?sel"iq%lggl,sﬂgéfggsér dynam- “cor 5 class of nonlinear systems, a recent and attractive approach
developed by Liaet al. in [5], is built upon two steps. The first one
consists in computing the observer gain matrix for synchronization of
a message free chaotic system. After, the information signal is added
to the output signal and also injected linearly into the chaotic model
through the observer gain matrix previously computed.

In this contribution, that may be seen as a generalization of the
approach performed in [5], we investigate generalized nonlinear state
space observers based approach for both chaos synchronization and
secure communication. We introduce useful regular transformations to
establish mild conditions for asymptotic convergence. Performances
and easiness of implementation will be shown through the chaotic
Lorentz system.

In order to make clear our contribution, let us point out the main
differences with respect to the work of Liabal.[5]. First, we consider
chaotic systems with multiple outputs and multiple information signals
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