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Abstract— Cellular neural networks are dynamical sys-
tems, described by a large set of coupled nonlinear differen-
tial equations. The equilibrium point analysis is an important
step for understanding the global dynamics and for providing
design rules. We yield a set of sufficient conditions (and a
simple algorithm for checking them) ensuring the existence
of at least one stable equilibrium point. Such conditions give
rise to simple constraints, that extend the class of CNN, for
which the existence of a stable equilibrium point is rigorously
proved. In addition, they are suitable for design and easy to
check, because they are directly expressed in term of the
template elements.

Index Terms— Nonlinear circuits, cellular neural networks,
equilibrium analysis, stable equilibrium points.

I. I NTRODUCTION

CELLULAR Neural Networks (CNNs) are analog
dynamic processors, that have found several applica-

tions for the solution of complex computational problems
[1]-[6]. A CNN can be described as an array of identical
nonlinear dynamical systems (called cells), that are locally
interconnected. In most applications the connections are
specified through space-invariant templates.

CNNs are modeled by large systems of coupled nonlin-
ear differential equations, that have been mainly studied
through extensive computer simulations. As far as the
dynamic behavior is concerned, CNNs can be divided in
two main classes: stable CNNs, with the property that
each trajectory (with the exception of a set of measure
zero) converges towards an equilibrium point; unstable
CNNs, that exhibit at least one attractor, that is not a stable
equilibrium point. Due to the complex CNN mathematical
model, so far a complete characterization of the two
classes above is not available [7].

A preliminary step for investigating CNN dynamics is
the equilibrium point analysis: in fact the existence of at
least one stable equilibrium point is a necessary condition
for the CNN stability, whereas the absence of stable
equilibria is a sufficient condition for instability. CNN
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equilibrium points have been studied in several papers, that
have provided important conditions, concerning the exis-
tence of stable equilibrium points [8]-[14]. Most of these
contributions, however, also apply to general networks and
do not really exploit the two main characteristics of a
CNN, i.e. the local connectivity and the space-invariance
structure.

In this paper we provide a set of sufficient conditions,
ensuring the existence of at least one stable equilibrium
point. They are expressed in term of the template elements
and, hence, they are very easy to check and to exploit for
CNN design.

A simple algorithm is given for checking the proposed
conditions and it is used for performing a detailed com-
parison with previous results reported in the literature.

Through this comparison we show that they include
most of the sufficient conditions previously reported in
the literature and considerably extend the class of CNNs
for which the existence of a stable equilibrium point is
rigorously proved [8]-[13].

II. SPACE-INVARIANT CNNS

We consider CNNs composed byN×M cells arranged
on a regular grid. We denote the position of a cell with two
indexes(k, l) with 1 ≤ k ≤ N and 1 ≤ l ≤ M and we
assume that cell(1, 1) is located in the upper left corner
and cell(N, M) is located in the lower right corner.

The network dynamics is governed by the following
normalized state equations

ẋkl = −xkl +
∑

|n|≤r,|m|≤r

Anm yk+n,l+m +

+
∑

|n|≤r,|m|≤r

Bnm uk+n,l+m + I
(1)

wherexkl andukl represent the state-voltage and the input
voltage of cell (k, l); ykl is the output voltage, defined
through the following piecewise linear expression:

ykl = f(xkl) =
1
2

(|xkl + 1| − |xkl − 1|) (2)

Finally r denotes the neighborhood of interaction of each
cell; Anm and Bnm are the elements of the linear tem-
platesA and B , that are assumed to be space-invariant
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andI is the bias term. The description of the structure is
completed by the specification of the boundary conditions,
that we assume to be null.

An alternative and useful expression for the state equa-
tions of a CNN is obtained by ordering the cells in some
way (e.g. by rows or by columns) and by repacking the
state, the input, the output variables and the bias terms
into the vectorsx , u , y and Î . The following compact
form is obtained:

ẋ = −x + Ây + B̂u + Î (3)

where matriceŝA and B̂ are obtained through the tem-
platesA andB , as explained in [15].

III. E QUILIBRIUM POINTS

For the sake of simplicity, we assume that the input
and the bias terms are null; however we remark that
the results presented in this paper also apply, with slight
modifications, to the case of constant inputs and non-
zero boundary conditions. In the following, with the term
saturation regionwe indicate a linear region of the state
space where all the output voltagesykl are saturated (i.e.
∀ k, l : |xkl| > 1). A saturation region will be described
by a matrix, containing as entries the output voltage values
(i.e.+1 or−1). We also assumer = 1, that is the template
A is represented by a3 × 3 matrix, as required in most
applications. Furthermore, the central element ofA is
greater than one (i.e.A0,0 > 1), to ensure that stable
equilibrium points are located in saturation regions [1].
We have:

A =




A−1,−1 A−1,0 A−1,1

A0,−1 A0,0 A0,1

A1,−1 A1,0 A1,1


 (4)

Under the above assumptions, theN ×M CNN turns
out to be described by the following state equations:

ẋkl = − xkl +
∑

|n|≤r,|m|≤r

Anm yk+n,l+m (5)

In this Section we will prove a set of sufficient condi-
tions for the existence of at least one stable equilibrium
point in a CNN described by equation (5).

The proof is carried out according to the following
strategy. As a first step, we reduce the problem of the
existence of a generic equilibrium point, to the study of
the conditions under which a suitable space-variant CNN
(described by a space-variant template) exhibits the equi-
librium point, where all cell outputs are saturated to+1
(Propositions 1, 2 and 3). As a second step we introduce
the definition of periodic saturation region and periodic
equilibrium point (Definitions 1 and 2) and of periodic
space-variant templates (Propositions 4 and 5). As a third
step we exploit the concept of space-variant template
for investigating the conditions of existence of periodic

equilibrium points (Propositions 6 and 7). Based on such
Propositions, we finally derive a set of sufficient conditions
for the existence of at least one stable equilibrium point
in a generic space-invariant CNN (Proposition 8). Such
conditions are then simplified into a simple algorithm, that
can be easily checked by examining the template elements.

Proposition 1: Let S = {ykl : (1 ≤ k ≤ N, 1 ≤ l ≤
M)} be a saturation region. Letgkl be a constant function
defined as follows:

gkl =
{

1 iff ykl = 1
−1 iff ykl = −1 (6)

Let us consider the space-variant CNN (SVCNN), as-
sociated to (5) with respect to the saturation regionS,
described by the following equations:

ẇkl = − wkl +
∑

|n|≤r,|m|≤r

Pkl,nm zk+n,l+m (7)

where zkl = f(wkl), and Pkl,nm are the entries of the
following space-variant feedback templatePkl:

Pkl : Pkl,nm = gkl Anm gk+n,l+m (8)

A sufficient and necessary condition in order that the CNN
(5) presents an equilibrium point in the saturation region
S is that the SVCNN (7) exhibits an equilibrium point in
the saturation regionS′ = {zkl : (∀ k, l, zkl = 1)}.

Proof: We prove that the system of equations (7)
is equivalent to (5) under the state transformationwkl =
gkl xkl that implies, according to (2),zkl = gkl ykl. In fact,
sinceẇkl = gkl ẋkl, using (5) and substitutinggklxkl and
ykl with wkl andg−1

kl zkl respectively, we obtain the system
(7):

ẇkl = gkl ẋkl

= gkl

(
−xkl +

∑
|n|≤r,|m|≤r Anm yk+n,l+m

)

=− wkl+

+
∑

|n|≤r,|m|≤r

(
gkl Anm g−1

k+n,l+m

)
zk+n,l+m

= − wkl +
∑
|n|≤r,|m|≤r Pkl,nm zk+n,l+m

(9)
where

Pkl,nm = gkl Anm g−1
k+n,l+m = gkl Anm gk+n,l+m (10)

Sincezkl = gkl ykl, it is derived that, according to (6), an
equilibrium point of the CNN (5) inS corresponds to a
point of the SVCNN (7), located inS′, i.e. the thesis of
Proposition 1.

In Table I we report a set of9 operators (denoted by
C), whereA is the generic template defined in (4).

Proposition 2: A SVCNN described by the state equa-
tion (7) presents an equilibrium point in the saturation
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region S′ = {zkl : (∀ k, l, zkl = 1)} if and only if the
space-variant template (8) fulfills the setE of constraints
defined in Table II.

Proof: The necessary and sufficient condition in
order that an equilibrium point exists inS′ is:

∀ k, l : ẇkl |wkl=1 > 0 (11)

By using (7), the set of conditionsC, and by considering
the boundary conditions (that are assumed to be null) it is
easily verified that (11) exactly corresponds to the set of
constraintsE on the templatePkl reported in Table II.

Proposition 3: A space-invariant CNN, described by
equation (5) and template (4), exhibits at least one stable
equilibrium point, if and only if there exists a saturation
region S and a functiongkl (defined as in (6)), such
that the corresponding SVCNN (described by (7) and (8))
satisfies the set of constraintsE defined in Proposition 2.

Proof: The thesis is a direct consequence of Proposi-
tion 1 and Proposition 2 and relies on the fact that, under
the assumptionA00 > 1, all stable equilibrium points are
located in saturation regions.

Definition 1: A saturation regionS of a N ×M CNN
is said to be periodic of period (Tk, Tl) if and only if,
∀ k, l such that1 ≤ k ≤ N − Tk, 1 ≤ l ≤ M − Tl, then:

yk+Tk,l+Tl
= ykl (12)

Definition 2: An equilibrium point of aN ×M CNN
is said to be periodic of period (Tk, Tl), if it belongs to a
saturation regionS, that is periodic of period (Tk, Tl).

Proposition 4: If a saturation regionS is periodic of
period (Tk, Tl), then also the functiongkl defined in (6)
and the space-variant templatePkl,nm defined in (7) are
periodic of period (Tk, Tl).

Proof: Note that (6) impliesgkl = ykl. Thengkl is
periodic of period (Tk, Tl) and, owing to (7), the same
property holds forPkl,nm.

Proposition 5: The set of space-variant templates (here-
after denoted byTS) associated to a saturation regionS
of period (Tk, Tl) is finite and its cardinality is at most
equal toTkTl.

Proof: It is a direct consequence of the fact that,
according to Proposition 4, the space-variant template
Pkl,nm is periodic of period (Tk, Tl).

Proposition 6: A sufficient and necessary condition in
order that aN × M CNN, described by (5), presents a
stable equilibrium point of period (Tk, Tl) is that there
exists a saturation regionS of period (Tk, Tl) and a cor-
responding space-variant templatePkl,nm of period (Tk,
Tl) that satisfy the constraintsE defined in Proposition 2.

Proof: It is a direct consequence of Proposition 2
and Proposition 4.

Since anyN ×M saturation region can be considered
periodic (by assuming in the worst caseN = Tk and
M = Tl), Propositions 3 and 6 imply:

Proposition 7: A sufficient and necessary condition in
order that aN × M CNN, described by (5), admits of
at least one stable equilibrium point is that it exhibits a
periodic equilibrium point of period (Tk, Tl), for someTk

andTl.
We will show that the sufficient part of Proposition 7

allows one to considerably extend the set of sufficient
conditions for the existence of stable equilibrium points
in space-invariant CNNs [8]-[13]. In order to do that,
we define the following subclass of periodic equilibrium
points.

Definition 3: A (Tk, Tl) periodic equilibrium point is
said to besimple if and only if it belongs to a saturation
region that satisfies the following properties:

ykl = hh
khv

l with hh
k , hv

l ∈ {−1, 1} (∀k, l)

hh
k+Tk

= hh
k (1 ≤ k ≤ N − Tk)

hv
l+Tl

= hv
l (1 ≤ l ≤ M − Tl)

(13)

The corresponding saturation region is also said to be
simple.

Example 1: In order to make clear the difference be-
tween a generic saturation region of period(Tk, Tl) and a
simple region of the same periodicity, let us consider the
following 9× 10 saturation regions:

Sp =




−1 −1 −1 −1 −1 1 1 1 −1 −1
1 1 1 −1 1 1 1 −1 −1 1
1 1 1 −1 −1 1 1 1 1 1
1 1 −1 −1 −1 −1 −1 1 1 1
1 −1 1 1 1 −1 1 1 1 −1
1 1 1 1 1 −1 −1 1 1 1

−1 1 1 1 −1 −1 −1 −1 −1 1
1 1 1 −1 1 1 1 −1 1 1

−1 1 1 1 1 1 1 −1 −1 1




(14)

Ss =




1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 1 −1

−1 +1 −1 +1 −1 +1 −1 +1 −1 +1
1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 1 −1

−1 +1 −1 1 −1 1 −1 1 −1 +1
1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 −1 1 −1 1 −1 1




(15)
It is worth noting that both the above regionSp andSs

exhibit a periodicity(Tk, Tl) = (3, 2). However the output
ykl of regionSp cannot be expressed in form (13): hence
region Sp is not simple. On the other hand we observe
that the output of regionSs admits of expression (13), by
choosing forhh

k andhv
k the following two sequences with

periodTk = 3 andTl = 2 respectively:

(hh
1 , hh

2 , hh
3 , hh

4 , hh
5 , hh

6 , hh
7 , hh

8 , hh
9 ) =

= (+1, +1,−1, +1, +1,−1, +1, +1,−1)

(hv
1, h

v
2, h

v
3, h

v
4, h

v
5, h

v
6, h

v
7, h

v
8, h

v
9, h

v
10) =

= (+1,−1,+1,−1, +1,−1, +1,−1,+1,−1)

(16)

According to (6) the functiongkl corresponding to a
simple saturation region can also be written asgkl =
ykl = hh

khv
l . The space variant template (8) admits of
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the following expression:

Pkl,nm = gkl Anm gk+n,l+m

= hh
khv

l Anm hh
k+nhv

l+m

(17)

The above transformation can be seen as the result of
the applications of two operators, that act separately on the
columns and on the rows of the templateA. These two
operators, called horizontal and vertical operators, will be
denoted withHk andV l respectively. They are defined as
follows:

Hk[A]=




ph
k A−1,−1 ph

k A−1,0 ph
k A−1,1

A0,−1 A0,0 A0,1

qh
k A1,−1 qh

k A1,0 qh
k A1,1




V l[A] =




pv
l A−1,−1 A−1,0 qv

l A−1,1

pv
l A0,−1 A0,0 qv

l A0,1

pv
l A1,−1 A1,0 qv

l A1,1




(18)

where
ph

k = hh
k−1h

h
k qh

k = hh
khh

k+1

pv
l = hv

l−1h
v
l qv

l = hv
l hv

l+1

(19)

By use of (17) and (18) the following expression for
the space-variant templatePkl is obtained:

Pkl = V l{Hk[A]} = Hk{V l[A]} =

=




ph
k pv

l A−1,−1 ph
k A−1,0 ph

k qv
l A−1,1

pv
l A0,−1 A0,0 qv

l A0,1

qh
k pv

l A1,−1 qh
k A1,0 qh

k qv
l A11




(20)

Due to the fact thathh
k , hv

l ∈ {−1, 1} and hence
ph

k , pv
k, qh

k , qv
k ∈ {−1, 1} only four different forms are

admissible for the operatorsHk and V l. For the sake
of simplicity, such forms are denoted by removing from
Hk and V l superscriptsk and l and by adding two
indexes, corresponding to the values ofph

k , qh
k andpv

k, qv
k

respectively. We have:

H11[A] =




A−1,−1 A−1,0 A−1,1

A0,−1 A0,0 A0,1

A1,−1 A1,0 A1,1




H1,−1[A] =




A−1,−1 A−1,0 A−1,1

A0,−1 A0,0 A0,1

−A1,−1 −A1,0 −A1,1




H−1,1[A] =



−A−1,−1 −A−1,0 −A−1,1

A0,−1 A0,0 A0,1

A1,−1 A1,0 A1,1




H−1,−1[A] =



−A−1,−1 −A−1,0 −A−1,1

A0,−1 A0,0 A0,1

−A1,−1 −A1,0 −A1,1




(21)

V11[A] =




A−1,−1 A−1,0 A−1,1

A0,−1 A0,0 A0,1

A1,−1 A1,0 A1,1




V1,−1[A] =




A−1,−1 A−1,0 −A−1,1

A0,−1 A0,0 −A0,1

A1,−1 A1,0 −A1,1




V−1,1[A] =



−A−1,−1 A−1,0 A−1,1

−A0,−1 A0,0 A0,1

−A1,−1 A1,0 A1,1




V−1,−1[A] =



−A−1,−1 A−1,0 −A−1,1

−A0,−1 A0,0 −A0,1

−A1,−1 A1,0 −A1,1




(22)

Example 2:With reference to the simple saturation
region Ss shown in (15), we can readily compute the
space-variant templatePkl for eachk andl. As an example
we consider the casek = 5 and l = 5. By using the
values ofhh

4,5,6 and hv
4,5,6 given in (16), we derive that

ph
5 = 1, pv

5 = −1, qh
5 = −1 and qv

5 = −1. Then
by substituting such coefficients in (20) we obtain the
following expression forP55

P55 =



−A−1,−1 A−1,0 −A−1,1

−A0,−1 A0,0 −A0,1

A1,−1 −A1,0 A1,1


 (23)

By exploiting the horizontal and the vertical operators
defined in (21) and (22) the space-variant templateP55

can be expressed as:

P55 = H1,−1 {V−1,−1[A]} (24)

We observe that, by following a similar procedure, the
explicit expression of the other space-variant templates
Pkl, with (k, l) 6= (5, 5), can be easily computed.

Owing to (18) it is derived that two consecutive op-
eratorsHk = Hab and Hk+1 = Hcd must satisfy the
constraintb = c; the same property holds for the operators
V l. In order to give a compact characterization of such
sequences we will introduce the following definition.

Definition 4: Given an oriented (connected) graph, con-
taining n nodes,a1, ... an, such thata1 → a2 → a3 →
... → an−1 → an → a1, the corresponding closed
sequence is denoted byC(a1, a2, ... an).

Owing to the above definition, it is easily derived that
a closed sequence is not altered if the argument is shifted,
i.e.C(a1, a2, ... an) = C(ai, ai+1, ... an, a1, a2, ... ai−1).
With the notation[·]p we denote the sequence obtained by
iterating p times a generic operator;p = 0 denotes the
null sequence.

According to the above notations, the set of all the
admissible closed sequences for the horizontal and vertical
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operators can be expressed as:

H operators:

C([H−1,1]m, [H1,1]p, [H1,−1]m, [H−1,−1]q)

V operators:

C([V−1,1]m, [V1,1]p, [V1,−1]m, [V−1,−1]q)

(25)

with
(m = 0, q = 0, p > 0)

or (m = 0, p = 0, q > 0)
or (m = 1, p ≥ 0, q ≥ 0)

(26)

We are now ready to give the main result that can be
used to test the existence of a stable equilibrium point in
the original CNN.

Proposition 8: Let C(H1, H2, ...Hp) and
C(V1, V2, ...Vq) be two admissible closed sequences of
horizontal and vertical operators, respectively. Let a CNN
be described by templateA. If there exists, r, t, andu
such that the set of conditions reported in Table III are
satisfied, then there existN and M such that the CNN
exhibits at least one stable equilibrium point.

Proof: We assume

N =

{
t− s + 1 + np if t ≥ s

t− s + 1 + (n + 1)p if t < s

M =

{
u− r + 1 + nq if r ≥ u

u− r + 1 + (n + 1)q if r < u

(27)

with n = 0, 1, 2 .... We denote with mod(a, b) the rest
of the division between two integersa and b. If the
conditions of the Table III are fulfilled, then the space-
variant template

Pkl = Hα{Vβ [A]} (28)

where {
α = mod(s + k − 1, p)

β = mod(r + l − 1, q)
(29)

satisfies all the conditionsE reported in Proposition 2, for
1 ≤ k ≤ N , 1 ≤ l ≤ M ; hence, according to Proposition 6
and 7, theN × M CNN admits of at least one stable
equilibrium point.

In the following section we propose a suitable algo-
rithm based on Proposition 8 for checking the sufficient
condition provided.

IV. A LGORITHM

The application of Proposition 8 to theH and theV
admissible closed sequences is explained in Tables IV(a)
and IV(b). The second column of Table IV(a) contains
the six classes of admissible closed sequences for both
H andV operators. Such classes are readily derived from

expressions (25) and (26) and are denoted withSHi and
SV i respectively (i = 1, ... 6). Table IV(b) contains a set
of conditions, equivalent to Proposition 8, that involves
the horizontal operatorsHI , HK , HL, and the verti-
cal operatorsVJ , VG, VM , whereI, K, L, J, G, M, ∈
{(1, 1), (1,−1), (−1, 1), (−1,−1)}. Finally, the third
column of Table IV(a) shows the values of the parameters
I, K, L and J, G, M for which the conditions given in
Table IV(b) have to be verified.

It is seen that the total number of possible choices for
the parametersI, L is 40; then each choice corresponds
to one or more values ofK. By considering that some
cases are incorporated into others, the actual number of
possible cases can be reduced to16: they are listed in
Table V(a) and numbered fromH1 to H16. The same
considerations are valid for the sixSV i sequences, with
respect to the parametersJ,M andG. Table V(b) reports
all the possible choices for the parametersJ,M and G:
they are numbered fromV 1 to V 16.

The total number of cases reported in Table V can be
further reduced by examining in more detail the set of
conditionsC, shown in Table IV(b).

To this end, let us consider the operatorsHI , HL, and
HK reported in Table IV(b) (I, L, K ∈ {(i, j)|i, j =
±1}). It is seen thatA templates transformed by operator
HI must satisfy conditionsCNW , CN , and CNE . Such
conditions involve only the second and the third row of
HI [VJ,G,M [A]] (J, G, M ∈ {(k, l)|k, l = ±1}), i.e. the
rows that, according to (4), are labelled withn = 0 and
n = 1 respectively. SinceHI = Hi,h (i, h ∈ {±1})
operates on the first and on the third row through indices
i and h respectively, the first indexi does not affect
conditions CNW , CN , and CNE . Hence the following
statement holds:

Statement 1:The set of conditionsCNW , CN , CNE

is satisfied by templateH+1,h[VJ,G,M [A]] (J, G, M ∈
{(k, l)|k, l = ±1}), if and only if it is also satisfied by
templateH−1,h[VJ,G,M [A]].

The same considerations apply to operatorHL with
reference to conditionsCSW , CS , and CSE , as stated
below.

Statement 2:The set of conditionsCSW , CS , CSE

is satisfied by templateHh,+1[VJ,G,M [A]] (J, G, M ∈
{(k, l)|k, l = ±1}), if and only if it is also satisfied by
templateHh,−1[VJ,G,M [A]].

We point out that a similar statement does not hold for
operatorHK , since the involved conditions (i.e.CW , C0 ,
CE) concern all the template rows.

Using the above statements, the set of choices reported
in Table V(a) may be reduced to a minimum. As an exam-
ple, let us consider casesH8 andH9. They are identical
for what concerns parameterK and are equivalent owing
to the statements above. Hence, to prove the existence of at
least one stable equilibrium point, only one case between
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H8 andH9 should be used.
Now, let us consider casesH8 andH5. According to the

above statements they are identical for the possible choices
of parametersI andL, whereasH5 is less restrictive than
H8 for what concerns parameterK. Hence, since it is
sufficient that only one of the three casesH5, H8, and
H9 is verified, only the less severe caseH5 enters as an
element of the minimum set of choices used for proving
the existence of at least one stable equilibrium point.

Following a similar strategy, it turns out that only the
first six choices of Table V(a), namelyH1, H2, H3, H4,
H5, andH6, form a minimum, independent set for what
concerns operatorH.

Finally, if operatorV and Table V(b) are considered,
a similar reasoning reduces the effectively independent
choices toV 1, V 2, V 3, V 4, V 5, andV 6.

The final minimum set of possible choices, extracted
from Table V together with the set of constrained to be
verified, is shown in Table VI.

The above considerations allow us to reformulate the
sufficient conditions provided by Proposition 8 according
to the followingAlgorithm :

I - consider each one of the possible6×6 = 36 cases
obtained by combining a caseHm, (1 ≤ m ≤ 6)
of Table VI(a) with a caseV n, (1 ≤ n ≤ 6) of
Table VI(b);

II - check the constraints reported in Table VI(c), for
the prescribed values of the parametersI, L, K
andJ, M, G;

III - if such constraints are verified for at least one of
the 36 considered cases, then the CNN exhibits at
least one stable equilibrium point.

We remark that the above procedure simply requires
to check some sets of inequalities, expressed in term of
the template elements; hence it exploits both the local
connectivity and the CNN space-invariant structure.

We will show in the next Section that the above algo-
rithm considerably extends the class of CNNs for which
a rigorous proof of the existence of a stable equilibrium
point is available.

V. COMPARISON WITH PREVIOUS RESULTS

In this section we report all the main classes of CNNs
for which the existence of at least one stable equilibrium
point has been rigorously proved. We will denote such
classes byCA, CB , CC , CD , andCE . Then we compare
such classes with the class of CNN (hereafter denoted by
C ) that satisfies the sufficient conditions provided through
Proposition 8 and the corresponding Algorithm presented
in the previous Section. As pointed out in Section III we
assume that the input and the bias terms be null.

Class CA [8]: A CNN described by equation (3)
presents a stable equilibrium point if the comparison
matrix of Â−U is a non-singular M-matrix.

ClassCB (Theorem 2 of [10]):A CNN described by
equation (3) presents a stable equilibrium point if there
exists a permutation{1, 2, ...n} → {λ1, λ2, λn} such
that:

Âλiλi
− 1 >

n∑

j=i+1

|Âλiλj
| ∀ i (30)

ClassCC (Theorem 4 of [10]):A space-invariant CNN
described by equations (5) exhibits at least one stable
equilibrium point if the template elements satisfy at least
one of the following inequalities:

A0,0 − 1 > |A0,1|+ |A1,1|+ |A1,0|+ |A1,−1|
A0,0 − 1 > |A−1,1|+ |A0,1|+ |A1,1|+ |A1,0|
A0,0 − 1 > |A−1,0|+ |A−1,1|+ |A0,1|+ |A1,1|
A0,0 − 1 > |A−1,−1|+ |A−1,0|+ |A−1,1|+ |A0,1|
A0,0 − 1 > |A0,−1|+ |A−1,−1|+ |A−1,0|+ |A−1,1|
A0,0 − 1 > |A1,−1|+ |A0,−1|+ |A−1,−1|+ |A−1,0|
A0,0 − 1 > |A1,0|+ |A1,−1|+ |A0,−1|+ |A−1,−1|
A0,0 − 1 > |A1,1|+ |A1,0|+ |A1,−1|+ |A0,−1|

(31)
Remark 1:ClassCC coincides with ClassCB in case

of CNNs described by space-invariant templates (see The-
orem 4 of [10]).

Remark 2:Class CA is included in ClassCB and
therefore in ClassCC for CNNs described by space-
invariant templates (see Theorem 1 of [10]).

Since our results explicitly refer to space-invariant
CNNs, according to the above Remarks 1 and 2 it
is sufficient to compare classC (i.e. the class defined
through Proposition 8 and the corresponding Algorithm)
with ClassCC .

Comparison of classCC with classC : The following
Propositions holds:

Proposition 9: ClassC is not included in ClassCC .
Proof: Let us consider the following template:

A =



−a a a
−a A0,0 a
a a −a


 1 ≤ A0,0 ≤ a (32)

It belongs to ClassC , because it satisfies the constraints
of Table IV(b) for the caseH1− V 6. On the other hand
it is seen that it does not satisfy anyone of the inequalities
(31) and therefore does not belong to ClassCC .

This implies that ClassC is not included in ClassCC .

Proposition 10: ClassCC is not included in ClassC .
Proof: Let us consider the following template:

A =




a −a −5a
−a A0,0 A0,1

A1,−1 A1,0 A1,1


 (33)
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with{
A0,0−1 = |A0,1|+|A1,−1|+|A1,0|+|A1,1|+ε

ε > 0
(34)

We observe that it belongs toCC for any positiveε. It
is easily verified that the only two saturation regions, that
admit of a stable equilibrium, for any positiveε areS and
−S , where:

S =

[
1 −1 1 −1 · · · 1 −1 1 −1
1 −1 1 −1 · · · 1 −1 1 1
1 −1 1 −1 · · · 1 −1 −1 1
1 −1 1 −1 · · · 1 1 −1 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

]
(35)

We note that the above equilibrium point is not simple,
according to Definition 3 and therefore cannot be detected
through Proposition 8. This implies that ClassCC is not
included in ClassC .

Remark 3: In a forthcoming paper [12], the authors
have shown that there exist two other classes of matrices
Â−U that guarantee the existence of at least one stable
equilibrium point (see Theorems 10 and 11 of [12]). The
first class (denoted in [12] asR0) represents an extension
of classCA: it is easily proved that for space-invariant
templates classR0 is included in the class defined by (31)
by substituting≥ to > in each inequality. The second class
(denoted in [12] asF0) is in general different fromR0,
but in case of space invariant templates it is a subclass of
R0. By exploiting the same arguments used in the proof
of Propositions 9 and 10, it is easily derived that no one
of the classesR0 andC is included in the other one.

Class CD [11]: A CNN described by equation (3)
presents a stable equilibrium point if the following condi-
tion holds:

∀ i :
∑

j

Âij − 1 > 0 (36)

Comparison of classCD with classC : It is readily
derived that ClassCD can be defined through the con-
straints of Table IV(b) obtained by combining caseH1 of
Table VI(a) (i.e. I = L = K = (1, 1)) and caseV 1 of
Table VI(b) (i.e. J = M = G = (1, 1)). Hence ClassCD

is included in ClassC
ClassCE [13]: A space-invariant CNN described by

equations (5) is stable almost everywhere and therefore
exhibits at least one stable equilibrium point if the signs
of the template elements are arranged according to anyone
of the following configurations:


+ + +
+ A0,0 +
+ + +






− + −
− A0,0 −
− + −


 (37)



− − −
+ A0,0 +
− − −






− + −
+ A0,0 +
− + −


 (38)

Comparison of classCE with class C : Templates
with any of the sign configurations shown in (37) are a

particular case of ClassC , when casesH1 − V 1 and
H1 − V 2 respectively are considered. Templates with
the any of the sign configurations shown in (38) are a
particular case of ClassC , when casesH2 − V 1 and
H2 − V 2 respectively are considered. It is derived that
ClassCE is included in ClassC .

Finally we give two examples of templates which de-
scribe CNN belonging to classC and not to the others.

Example 3:The first example is a space-invariantN ×
M CNN defined by the following templateA1

A1 =



−r +s +r
−s +p +s
−r −s −r








s > 0
p > 1
r > 0

(39)

This CNN exhibits at least one stable equilibrium point
if the template elements satisfy the inequalities previously
reported for ClassesCC , CD , CE andC and summarized
in Table below. From this Table it is derived that Classes
CC , CD andCE are included in ClassC .

Classes Conditions

CC p− 1 > 2(s + r)

CD p− 1 >

{
s + 2r if r > s
2s + r if r < s

CE N.A.

C : H1− V 2 p− 1 >

{
r if r > s
2s− r if r < s

If we assumes = 1, p = 4 and r = 2 then only
the conditions of ClassC are satisfied. As an example
a 5 × 5 CNN, described by such parameters, exhibit
16, 012 equilibrium points. One of them is defined by the
following state:

x1 =




+4 −7 +7 −7 +6
+3 −8 +8 −8 +9
+3 −8 +8 −8 +9
+3 −8 +8 −8 +9
+2 −5 +5 −5 +8




(40)

Example 4:The second example is again a space-
invariantN ×M CNN, defined by the following template
A2

A2 =




+r +s +r
−s +p −s
−r −s +r








s > 0
p > 1
r > 0

(41)

This CNN exhibits at least one stable equilibrium point if
the template elements satisfy the inequalities reported in
the following Table.
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Classes Conditions

CC p− 1 > 2(s + r)

CD p− 1 >

{
3s if r < s
r + 2s if r > s

CE N.A.

C : H2− V 2 p− 1 >

{ −r if r < s
r − 2s if r > s

Also in this case, ClassesCC , CD andCE are subsets
of ClassC . In particular, if we suppose thats = 3, p = 2
andr = 2, then only the conditions of ClassC are satis-
fied. A 5×5 CNN described by these parameters possesses
8 equilibrium points, one of which is the following:

x2 =




+10 −11 +11 −11 +6
−9 +12 −12 +12 −5
+9 −12 +12 −12 +5
−9 +12 −12 +12 −5
+4 −9 +9 −9 +4




(42)

VI. CONCLUSION

We have investigated the properties of stable equilib-
rium points in space-invariant CNNs. We have yielded
a set of sufficient conditions (and a simple algorithm
for checking them) ensuring the existence of at least
one stable equilibrium point. Such conditions present
two main characteristics: a) they exploit both the CNN
local connectivity and the space-invariant structure and
hence they are directly expressed in terms of the template
elements; b) they are different from the results reported
in the literature [8]-[13] and include some of them. In
particular they considerably extend the class of CNN,
for which the existence of a stable equilibrium point is
rigorously proved.

We point out that the complete characterization of the
class of CNN that exhibits at least one stable equilibrium
point is a fundamental step for understanding CNN global
dynamics.
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TABLE I

SET OF OPERATORS DENOTED BYC .

CNW [A] =

n=1∑
n=0

m=1∑
m=0

Anm CN [A] =

n=1∑
n=0

m=1∑
m=−1

Anm CNE [A] =

n=1∑
n=0

m=0∑
m=−1

Anm

CW [A] =

n=1∑
n=−1

m=1∑
m=0

Anm C0[A] =

n=1∑
n=−1

m=1∑
m=−1

Anm CE [A] =

n=1∑
n=−1

m=0∑
m=−1

Anm

CSW [A] =

n=0∑
n=−1

m=1∑
m=0

Anm CS [A] =

n=0∑
n=−1

m=1∑
m=−1

Anm CSE [A] =

n=0∑
n=−1

m=0∑
m=−1

Anm
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TABLE II

SET OF CONSTRAINS(DENOTED BY E ) OF PROPOSITION2.

CNW [P11] > 1 CN [P1l] > 1 ∀ l 6= {1, M} CNE [P1M ] > 1

CW [Pk1] > 1 ∀ k 6= {1, N} C0[Pkl] > 1 ∀ k 6= {1, N},∀ l 6= {1, M} CE [PkM ] > 1 ∀ k 6= {1, N}

CSW [PN1] > 1 CS [PNl] > 1 ∀ l 6= {1, M} CSE [PNM ] > 1
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TABLE III

SET OF CONSTRAINS OFPROPOSITION8.

CNW [Hs[Vr(A)]] > 1 CN

[
Hs[Vj(A)]

]
> 1 ∀ i CNE [Hs[Vu(A)]] > 1

CW

[
Hi[Vr(A)]

]
> 1 ∀ j C0

[
Hi[Vj(A)]

]
> 1 ∀ i, j CE

[
Hi[Vu(A)]

]
> 1 ∀ j

CSW

[
Ht[Vr(A)]

]
> 1 CS

[
Ht[Vj(A)]

]
> 1 ∀ i CSE

[
Ht[Vu(A)]

]
> 1
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TABLE IV

APPLICATION OF PROPOSITION8 TO THE ADMISSIBLEH AND V SEQUENCES: (A) ADMISSIBLE SEQUENCES; (B) CONSTRAINED TO BE

VERIFIED.

Cases Admissible Sequences Admissible Values for the ParametersI, K, L, J, G, M

SH1

C([H11]p)

(m = 0, p > 0, q = 0)

I
L
K

=
=
=

(1, 1)
(1, 1)
(1, 1)

SH2

C([H−1,−1]q)

(m = 0, p = 0, q > 0)

I
L
K

=
=
=

(−1,−1)
(−1,−1)
(−1,−1)

SH3

C(H−1,1, H1,−1)

(m = 1, p = 0, q = 0)

I
L
K

=
=
=

(−1, 1)
(−1, 1)
(−1, 1)

or
or

and

(1,−1)
(1,−1)
(1,−1)

SH4

C(H−1,1, [H1,1]p,H1,−1)

(m = 1, p > 0, q = 0)

I
L
K

=
=
=

(1,−1)
(1,−1)
(1,−1)

or
or

and

(−1, 1)
(−1, 1)
(−1, 1)

or
or

and

(1, 1)
(1, 1)
(1, 1)

SH5

C(H−1,1,H1,−1, [H−1,−1]q)

(m = 1, p = 0, q > 0)

I
L
K

=
=
=

(1,−1)
(1,−1)
(1,−1)

or
or

and

(−1, 1)
(−1, 1)
(−1, 1)

or
or

and

(−1,−1)
(−1,−1)
(−1,−1)

SH6

C(H−1,1, [H1,1]p,H1,−1, [H−1,−1]q)

(m = 1, p > 0, q > 0)

I
L
K

=
=
=

(1,−1)
(1,−1)
(1,−1)

or
or

and

(−1, 1)
(−1, 1)
(−1, 1)

or
or

and

(1, 1)
(1, 1)

(−1,−1)

or
or

and

(−1,−1)
(−1,−1)
(−1,−1)

SV 1

C([V11]p)

(m = 0, p > 0, q = 0)

J
M
G

=
=
=

(1, 1)
(1, 1)
(1, 1)

SV 2

C([V−1,−1]q)

(m = 0, p = 0, q > 0)

J
M
G

=
=
=

(−1,−1)
(−1,−1)
(−1,−1)

SV 3

C(V−1,1, V1,−1)

(m = 1, p = 0, q = 0)

J
M
G

=
=
=

(−1, 1)
(−1, 1)
(−1, 1)

or
or

and

(1,−1)
(1,−1)
(1,−1)

SV 4

C(V−1,1, [V1,1]p,V1,−1)

(m = 1, p > 0, q = 0)

J
M
G

=
=
=

(1,−1)
(1,−1)
(1,−1)

or
or

and

(−1, 1)
(−1, 1)
(−1, 1)

or
or

and

(1, 1)
(1, 1)
(1, 1)

SV 5

C(V−1,1,V1,−1, [V−1,−1]q)

(m = 1, p = 0, q > 0)

J
M
G

=
=
=

(1,−1)
(1,−1)
(1,−1)

or
or

and

(−1, 1)
(−1, 1)
(−1, 1)

or
or

and

(−1,−1)
(−1,−1)
(−1,−1)

SV 6

C(V−1,1, [V1,1]p,V1,−1, [V−1,−1]q)

(m = 1, p > 0, q > 0)

J
M
G

=
=
=

(1,−1)
(1,−1)
(1,−1)

or
or

and

(−1, 1)
(−1, 1)
(−1, 1)

or
or

and

(1, 1)
(1, 1)

(−1,−1)

or
or

and

(−1,−1)
(−1,−1)
(−1,−1)

(a)

CNW [HI [VJ (A)]]>1 CN [HI [VG (A)]]>1 CNE [HI [VM (A)]]>1

CW [HK [VJ (A)]] >1 C0 [HK [VG (A)]]>1 CE [HK [VM (A)]] >1

CSW [HL [VJ (A)]]>1 CS [HL [VG (A)]]>1 CSE [HL [VM (A)]]>1

(b)
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TABLE V

TOTAL NUMBER OF POSSIBLE CHOICES: (A) FOR THE PARAMETERSI , L AND K ; (B) FOR THE PARAMETERSJ , M AND G

I L K Case

(1, 1) (1, 1) (1, 1) H1

(−1,−1) (−1,−1) (−1,−1) H2

(1,−1) (1,−1) (1,−1) and (−1, 1) H3

(1,−1) (−1, 1) (1,−1) and (−1, 1) H4

(−1, 1) (1,−1) (1,−1) and (−1, 1) H5

(−1, 1) (−1, 1) (1,−1) and (−1, 1) H6

(1,−1) (1, 1) (1,−1) and (−1, 1) and (1, 1) H7

(−1, 1) (1, 1) (1,−1) and (−1, 1) and (1, 1) H8

(1, 1) (1,−1) (1,−1) and (−1, 1) and (1, 1) H9

(1, 1) (−1, 1) (1,−1) and (−1, 1) and (1, 1) H10

(1,−1) (−1,−1) (1,−1) and (−1, 1) and (−1,−1) H11

(−1, 1) (−1,−1) (1,−1) and (−1, 1) and (−1,−1) H12

(−1,−1) (1,−1) (1,−1) and (−1, 1) and (−1,−1) H13

(−1,−1) (−1, 1) (1,−1) and (−1, 1) and (−1,−1) H14

(1, 1) (−1,−1) (1,−1) and (−1, 1) and (1, 1) and (−1,−1) H15

(−1,−1) (1, 1) (1,−1) and (−1, 1) and (1, 1) and (−1,−1) H16

(a)

J M G Case

(1, 1) (1, 1) (1, 1) V 1

(−1,−1) (−1,−1) (−1,−1) V 2

(1,−1) (1,−1) (1,−1) and (−1, 1) V 3

(1,−1) (−1, 1) (1,−1) and (−1, 1) V 4

(−1, 1) (1,−1) (1,−1) and (−1, 1) V 5

(−1, 1) (−1, 1) (1,−1) and (−1, 1) V 6

(1,−1) (1, 1) (1,−1) and (−1, 1) and (1, 1) V 7

(−1, 1) (1, 1) (1,−1) and (−1, 1) and (1, 1) V 8

(1, 1) (1,−1) (1,−1) and (−1, 1) and (1, 1) V 9

(1, 1) (−1, 1) (1,−1) and (−1, 1) and (1, 1) V 10

(1,−1) (−1,−1) (1,−1) and (−1, 1) and (−1,−1) V 11

(−1, 1) (−1,−1) (1,−1) and (−1, 1) and (−1,−1) V 12

(−1,−1) (1,−1) (1,−1) and (−1, 1) and (−1,−1) V 13

(−1,−1) (−1, 1) (1,−1) and (−1, 1) and (−1,−1) V 14

(1, 1) (−1,−1) (1,−1) and (−1, 1) and (1, 1) and (−1,−1) V 15

(−1,−1) (1, 1) (1,−1) and (−1, 1) and (1, 1) and (−1,−1) V 16

(b)
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TABLE VI

M INIMUM SET OF POSSIBLE CHOICES EXPLOITED BY THE PROPOSED ALGORITHM: (A) FOR THE PARAMETERSI , L AND K ; (B) FOR THE

PARAMETERSJ , M AND G; (C) CONSTRAINED TO BE VERIFIED

I L K Case

(1, 1) (1, 1) (1, 1) H1

(−1,−1) (−1,−1) (−1,−1) H2

(1,−1) (1,−1) (1,−1) and (−1, 1) H3

(1,−1) (−1, 1) (1,−1) and (−1, 1) H4

(−1, 1) (1,−1) (1,−1) and (−1, 1) H5

(−1, 1) (−1, 1) (1,−1) and (−1, 1) H6

(a)

J M G Case

(1, 1) (1, 1) (1, 1) V 1

(−1,−1) (−1,−1) (−1,−1) V 2

(1,−1) (1,−1) (1,−1) and (−1, 1) V 3

(1,−1) (−1, 1) (1,−1) and (−1, 1) V 4

(−1, 1) (1,−1) (1,−1) and (−1, 1) V 5

(−1, 1) (−1, 1) (1,−1) and (−1, 1) V 6

(b)

CNW [HI [VJ (A)]]>1 CN [HI [VG (A)]]>1 CNE [HI [VM (A)]]>1

CW [HK [VJ (A)]] >1 C0 [HK [VG (A)]]>1 CE [HK [VM (A)]] >1

CSW [HL [VJ (A)]]>1 CS [HL [VG (A)]]>1 CSE [HL [VM (A)]]>1

(c)


