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Equilibrium Analysis of Cellular Neural
Networks

M. Gilli, Senior Member, IEEBM. Biey, and P. Checc&tudent Member, IEEE

Abstract—Cellular neural networks are dynamical sys- equilibrium points have been studied in several papers, that
tems, described by a large set of coupled nonlinear differen- have provided important conditions, concerning the exis-
tial equations. The equilibrium point analysis is an important tence of stable equilibrium points [8]-[14]. Most of these

step for understanding the global dynamics and for providing L
design rules. We vield a set of sufficient conditions (and a contributions, however, also apply to general networks and

simple algorithm for checking them) ensuring the existence do not really exploit the two main characteristics of a
of at least one stable equilibrium point. Such conditions give CNN, i.e. the local connectivity and the space-invariance
rise to simple constraints, that extend the class of CNN, for strycture.

which the exist_e_nce of a stable e_quilibrium po_int is rigorously In this paper we provide a set of sufficient conditions,
proved. In addition, they are suitable for design and easy to . . L
check, because they are directly expressed in term of the €NSUriNg the existence of .at least one stable equilibrium
template elements. point. They are expressed in term of the template elements
and, hence, they are very easy to check and to exploit for
CNN design.

A simple algorithm is given for checking the proposed
conditions and it is used for performing a detailed com-
parison with previous results reported in the literature.

ELLULAR Neural Networks (CNNs) are analog Through this comparison we show that they include
dynamic processors, that have found several appliagost of the sufficient conditions previously reported in
tions for the solution of complex computational problemghe literature and considerably extend the class of CNNs
[1]-[6]. A CNN can be described as an array of identicgor which the existence of a stable equilibrium point is
nonlinear dynamical systems (called cells), that are localiorously proved [8]-[13].
interconnected. In most applications the connections are
specified through space-invariant templates. Il. SPACE-INVARIANT CNNSs

CNNs are modeled by large systems of coupled nonlin- .
ear differential equations, that have been mainly studiedWe consider CNNs composed by x M cells arranged

through extensive computer simulations. As far as t a regular grid. We denote the position of a cell with two

dynamic behavior is concerned, CNNs can be divided |Hdexes(l~c,l) with 1 g, k<N andl <! < M and we
two main classes: stable CNNs, with the property thaesume that celll, 1) is located in the upper left corner
each trajectory (with the exception of a set of measuPé‘_?hce”(N ’ Mﬁ ';‘ Iocatgd n the Iowerdnght ﬁorr;elrl. i
zero) converges towards an equilibrium point; unstable el_ne:jwor ynamics 1S governed by the following
CNNS, that exhibit at least one attractor, that is not a stadl@"ma!1z€ state equations

Index Terms— Nonlinear circuits, cellular neural networks,
equilibrium analysis, stable equilibrium points.

I. INTRODUCTION

equilibrium point. Due to the complex CNN mathematical ;. — _;  + Z Apn Yrtmiom +

model, so far a complete characterization of the two In|<r|m|<r

classes above is not available [7]. Q)
A preliminary step for investigating CNN dynamics is + Z B Uktni4m + 1

the equilibrium point analysis: in fact the existence of at [n|<r|m|<r

least one stable equilibrium point is a necessary conditior]qere andu., represent the state-voltage and the inout
for the CNN stability, whereas the absence of stable o -kt &nQux TP 9 P

equilibria is a sufficient condition for instability. CNN voltage of Ce”(’“’?); Yrt 1S the o_utput voltage,_ d§f|ned
through the following piecewise linear expression:
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and I is the bias term. The description of the structure isquilibrium points (Propositions 6 and 7). Based on such
completed by the specification of the boundary conditionBropositions, we finally derive a set of sufficient conditions
that we assume to be null. for the existence of at least one stable equilibrium point
An alternative and useful expression for the state equa-a generic space-invariant CNN (Proposition 8). Such

tions of a CNN is obtained by ordering the cells in someonditions are then simplified into a simple algorithm, that
way (e.g. by rows or by columns) and by repacking thean be easily checked by examining the template elements.
state, the input, the output variables and the bias termsProposition L:Let S = {yx; : (1 <kE< N, 1<I<
into the vectorse, u, y and I. The following compact M)} be a saturation region. Lef,; be a constant function
form is obtained: defined as follows:

o A T 7 1 iff Yl = 1

o=-—z+Ay+Bu+i @3) 9kl:{-1 wo ©)
Let us consider the space-variant CNN (SVCNN), as-
sociated to (5) with respect to the saturation regin
described by the following equations:

where matricesA and B are obtained through the tem-
plates A and B, as explained in [15].

IIl. EQUILIBRIUM POINTS

For the sake of simplicity, we assume that the input ~ Wkt = — Wkl + Z Pitnm Zotniem  (7)
and the bias terms are null; however we remark that In|<r,m|<r
the results presented in this paper also apply, with sligtere z;, = f(wy;), and Py .., are the entries of the
modifications, to the case of constant inputs and nofellowing space-variant feedback templal;:
zero boundary conditions. In the following, with the term
saturation regionwe indicate a linear region of the state Pt t Putim = gkt Anm Gt 4m ®)
space where all the output voltaggs are saturated (i.e. A sufficient and necessary condition in order that the CNN
Vk,l: |z| > 1). A saturation region will be described(5) presents an equilibrium point in the saturation region
by a matrix, containing as entries the output voltage valugsis that the SVCNN (7) exhibits an equilibrium point in
(i.e.+1 or —1). We also assume = 1, that is the template the saturation regios’ = {zy; : (VY k,I, zi = 1)}.
A is represented by & x 3 matrix, as required in most Proof: We prove that the system of equations (7)
applications. Furthermore, the central element ofis g equivalent to (5) under the state transformation =
greater than one (i.edoo > 1), to ensure that stable ¢, 1, that implies, according to (2}, = gx: ys. In fact,
equilibrium points are located in saturation regions [1kincewy,; = g @, using (5) and substituting,;z;; and
We have: Y With wy andg,;llzkl respectively, we obtain the system
A—l,—l A—1,0 A—1,1 (7):
A= A(),71 Ao,() A(),l 4)
A1 A A

Under the above assumptions, thex M CNN turns
out to be described by the following state equations:

Wkl = Gkl Thi

=g (*l’kl + 2 < mi<r Anm yk+n,l+m)

T = — T+ Z Anm Yetnitm  (B) == Wt
In|<rml|<r .
. . . - . + (gkl Apm g ) Zhtn,l+
In this Section we will prove a set of sufficient condi- Z Il B

In|<r,lm|<r

tions for the existence of at least one stable equilibrium
point in a CNN described by equation (5). = —wg + Z|n\§r,\m|§r Prinm Zktn,l+m

The proof is carried out according to the following 9
strategy. As a first step, we reduce the problem of théhere
existence of a generic equilibrium point, to the study of
the conditions under which a suitable space-variant CN
(described by a space-variant template) exhibits the eq8incezx; = gx; yx1, it is derived that, according to (6), an
librium point, where all cell outputs are saturated4#@ equilibrium point of the CNN (5) inS corresponds to a
(Propositions 1, 2 and 3). As a second step we introdupeint of the SVCNN (7), located i$’, i.e. the thesis of
the definition of periodic saturation region and periodi€roposition 1. ]
equilibrium point (Definitions 1 and 2) and of periodic In Table | we report a set o operators (denoted by
space-variant templates (Propositions 4 and 5). As a thitg), where 4 is the generic template defined in (4).
step we exploit the concept of space-variant template Proposition 2: A SVCNN described by the state equa-
for investigating the conditions of existence of periodition (7) presents an equilibrium point in the saturation

kl,nm = Gkl Anm g;—i{n,l-‘rm = Gkl Anm Jk+4n,l+m (10)
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region S’ = {z; : (Vk,I, 2z = 1)} if and only if the Proposition 7: A sufficient and necessary condition in
space-variant template (8) fulfills the s&tof constraints order that avV x M CNN, described by (5), admits of

defined in Table II. at least one stable equilibrium point is that it exhibits a
Proof: The necessary and sufficient condition irperiodic equilibrium point of period{,, 7;), for someTy,
order that an equilibrium point exists ifY is: and1;.

VEl: 4 0 11 We will show that the sufficient part of Proposition 7
b g =1 > 11 aliows one to considerably extend the set of sufficient

By using (7), the set of conditionS, and by considering conditions for the existence of stable equilibrium points
the boundary conditions (that are assumed to be null) itils space-invariant CNNs [8]-[13]. In order to do that,
easily verified that (11) exactly corresponds to the set #fe define the following subclass of periodic equilibrium
constraints€ on the templateP,; reported in Table 1l.m points.

Proposition 3: A space-invariant CNN, described by Definition 3: A (7}, T;) periodic equilibrium point is
equation (5) and template (4), exhibits at least one stalsigid to besimpleif and only if it belongs to a saturation
equilibrium point, if and only if there exists a saturatiorfegion that satisfies the following properties:
region S and a functiong; (defined as in (6)), such o hiv v 1h o
that the corresponding SVCNN (described by (7) and (g)) Y~ " With i, bt € {=1. 1} (Vh. 1)

satisfies the set of constrainfsdefined in Proposition 2. hyop =hl (1<k<N-Ty) (13)
Proof: The thesis is a direct consequence of Proposi- §

tion 1 and Proposition 2 and relies on the fact that, under hi g, =h (1<1I<M-T)

the assqmptlomoq > 1, a_II stable equilibrium points are The corresponding saturation region is also said to be

located in saturation regions. [ ]

simple

Example 1:In order to make clear the difference be-
tween a generic saturation region of perid@d,, 7;) and a
simple region of the same periodicity, let us consider the

Definition 1: A saturation regiorS of a N x M CNN
is said to be periodic of periodl}, 7;) if and only if,
Vk,lsuchthatl < k<N —-T, 1 <1< M-T,, then:

Ykt Ty I+T, = Yk (12) following 9 x 10 saturation regions:

Definition 2: An equilibrium point of aN x M CNN T T S St R S
is said to be periodic of periodl}, T}), if it belongs to a O R R S SR
saturation regiors, that is periodic of period(;, T;). Sy = AT T R R R

Proposition 4: If a saturation regionS is periodic of o1 . TroTroTL o T
period ([, T;), then also the functiom,; defined in (6) L0t ’(14)
and the space-variant templat; ,,,,, defined in (7) are ro: -1 1 -1 1 -1 1 -1 1 17
periodic of period ., 7). 1 Y1 -1 11 -1 y1 -1 11 -1 1

Proof: Note that (6) impliesjy; = yi. Thengp is S, = | + —1 1 ~1 1 1 1 —1 1 =
periodic of period {}, 7;) and, owing to (7), the same T 14 T oo a8
property holds forPy;, . n e R

L - 1
Proposition 5: The set of space-variant templates (here- _ ) (15)
after denoted by7s) associated to a saturation regign It is worth noting that both the above regidf) and S,
of period (I, Ty) is finite and its cardinality is at most exhibit & periodicity(7y, 7;) = (3, 2). However the output
equal toT}T}. yr, Of region S, cannot be expressed in form (13): hence
Proof: It is a direct consequence of the fact thaf€9ion S, is not simple. On the other hand we observe
according to Proposition 4, the space-variant templalgat the output of regioi$, admits of expression (13), by
Py nm is periodic of period Tx, T)). m choosing forh! andhy the following two sequences with
Proposition 6: A sufficient and necessary condition inP€riod Ty = 3 and7; = 2 respectively:
order that aN>< M QNN, desc;ribed by (5), presents a (R, Bl Bl Bl hE Bl RERE RE) =
stable equilibrium point of periodT{, 7;) is that there
exists a saturation regiaofi of period ([, ;) and a cor- = (+1,+1,-1,+1,+1,—1,+1,+1,-1)
responding_ space-variant .templalf_gl,nm. of perioq.(Fk, T (16)
T,) that satisfy the constraint defined in Proposition 2. (A1, h3, h3, hi, kg, h, by, hg, hg, hiy) =
Proof: It is a direct consequence of Proposition 2
and Proposition 4. ] =(+1, -1, 4L -1,41, 1,41, -1,41, 1)
Since anyN x M saturation region can be considered According to (6) the functiony; corresponding to a
periodic (by assuming in the worst cagé = T; and simple saturation region can also be written gg =
M =1,), Propositions 3 and 6 imply: yr = hihY. The space variant template (8) admits of
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the following expression:

Pkl,nm = Gkl Anm Gk+4n,l+m A*L*l A*LO A*Ll
- A (17) Vii[4] = Ao -1 Ao Ao
= hihi Anm R, A1 At Arq ]

The above transformation can be seen as the result of - -
the applications of two operators, that act separately on the ;
columns and on the rows of the template These two Vi,-1[4]
operators, called horizontal and vertical operators, will be L

denoted with{* and ) respectively. They are defined as 4 4 AT (22)
follows: oot —10 —11
. .\ i } V_o11[A] = |—40,1 Ao Ao
prA1 1 prAio prA-in Ay Ao Aig |
HF[A]= Ap,—1 Ao,o Ao 4 N .
h h h —A_1 _ _ —A_
qgr A1 qr Ao qr A 1,—1 1,0 11
L g ¥ T (18) V_1,-1[A] = | —40,1 Ao —Ao
[ pp A1 Aco @A | [~ 41,1 Ao~ |
VIA] = | pi Ao,—1 Ao q/ Aon Example 2:With reference to the simple saturation
Py Al 1 Ao @’ Ara region S; shown in (15), we can readily compute the
- ’ ’ - space-variant templaiB;,; for eachk andi. As an example
where h P b bk we consider the cask = 5 and/ = 5. By using the
P =hig_yhiaqp = hihiy, values ofh} . , and h} iven in (16), we derive that
(19) 4,5,6 4,56 9 )
v __ v v v _ pURY ph =1, pf = —1, qb = -1 and g = —1. Then
Py = hi_1h a = hihiy 5 > ° -

by substituting such coefficients in (20) we obtain the
By use of (17) and (18) the following expression fofollowing expression forPss;
the space-variant templaf®,; is obtained:
L rask ksl *A—l,—l A—l,o *A—l,l
P =V{H'[Al} = HH{V'[A]} = P55 = | —Ao,1 Ao —Aoa (23)

how A1 A Aia

phpt A1 prA_io phat Aqa

_ P Ay 4 Aoo g’ Ao (20) By exploiting the horizontal and the vertical operators
N lv ' ) ' N i} ’ defined in (21) and (22) the space-variant templBtg
axpl A1 gy Avo gy af An can be expressed as:
Due to the fact thath}, b € {-1,1} and hence Pss = Hy_1 {V_1._1]A]} (24)

Y, qr, ¢ € {—1,1} only four different forms are

admissible for the operator* and V'. For the sake We observe that, by following a similar procedure, the
of simplicity, such forms are denoted by removing fronexplicit expression of the other space-variant templates
H* and V! superscriptsk and [ and by adding two Py, with (k,1) # (5,5), can be easily computed.

indexes, corresponding to the valuespf ¢ andp?, ¢ Owing to (18) it is derived that two consecutive op-
respectively. We have: eratorsH* = H,, and H**! = H.; must satisfy the
constrainth = ¢; the same property holds for the operators

A Ao A VL. In order to give a compact characterization of such
A, A A quences we wi mtroduge the following definition.
L bl 1.0 b Definition 4: Given an oriented (connected) graph, con-
[ A, A 1o A 4] tainingn nodes,ay, ...a,, such thatu; — as — a3 —
Hi_1[A] =] A, _’1 Ao.oy Ay 1’ v Gno1 — ap = oa, the corresponding closed
—A17_1 —Ayo —A171 sequence is denoted I8aq, as, ... ay).
- ’ ’ (21) Owing to the above definition, it is easily derived that
A1 1 —A_o —A_14] a closed sequence is not altered if the argument is shifted,
H—l,l[A] = A0771 A070 AO,l i.e.c<(l17 as, ... an) = C(ai, Ajt 1y .- Ay, A1, A2, ...Cbifl).
Ay A Aqq With the notation[-]” we denote the sequence obtained by
B T iterating p times a generic operatofi = 0 denotes the
(A1 1 A0 —A_11] null sequence.
H_1,-1[A] = | Ao Aoo Ao According to the above notations, the set of all the
—Ai —A1o  —Aia admissible closed sequences for the horizontal and vertical
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operators can be expressed as: expressions (25) and (26) and are denoted With and
Sy; respectively { = 1, ...6). Table IV(b) contains a set
of conditions, equivalent to Proposition 8, that involves
C([H_14]™, [H1a)?, [H1, 1™, [Ho1.-1]7) the horizontal operator§i;, Hx, Hy, and the verti-
cal operatorsVy, Vg, Vi, Wherel, K, L, J, G, M, €

‘H operators

V operators (25) {(1,1), (1,-1), (-1,1), (-=1,-1)}. Finally, the third
column of Table IV(a) shows the values of the parameters
CV—ra]™ Via]? 1 a]™, [Ver,-1]9) I, K, L and J, G, M for which the conditions given in
) Table IV(b) have to be verified.
with It is seen that the total number of possible choices for

(m=0,¢=0,p>0)
or (m=0,p=0,qg>0) (26)
or (m=1,p>0,q>0)

the parameterd, L is 40; then each choice corresponds

to one or more values of(. By considering that some

cases are incorporated into others, the actual number of
We are now ready to give the main result that can kgyssible cases can be reducedlt they are listed in

used to test the existence of a stable equilibrium point Table V(a) and numbered fromif1 to H16. The same

the original CNN. considerations are valid for the si%,; sequences, with
Proposition 8: Let C(H', H?, ... HP) and respect to the parametess)M andG. Table V(b) reports

C(V!', V2, ... V) be two admissible closed sequences ¢fll the possible choices for the parametdrs/ and G:

horizontal and vertical operators, respectively. Let a CNihey are numbered frorir1 to V16.

be described by templatd. If there exists, r, ¢, andu  The total number of cases reported in Table V can be

such that the set of conditions reported in Table Il arﬁ"‘ther reduced by examining in more detail the set of
satisfied, then there exisV and M such that the CNN conditionsC, shown in Table IV(b).

exhibits at least one stable equilibrium point. To this end, let us consider the operatéts, H;, and
Proof: We assume Hy reported in Table IV(b) X, L, K € {(i,5)]i,j =
{ t—s+1+mnp if t>s +1}). Itis seen thatd templates transformed by operator
= . ‘H; must satisfy condition€'yy, Cn, and Cyg. Such
t-s+1ld+(n+lp i t<s conditions involve only the second and the third row of

@) ViamlA] , G, M € {(k,D)[k,1 = +1}), ie. the

M= { u—r+l+ng i orzu rows that, according to (4), are labelled with= 0 and
u—r+1+(n+1l)g if r<u n = 1 respectively. Since{; = Hi, (i, h € {£1})
with n = 0, 1, 2.... We denote with mofk, b) the rest operates on the _first and on the_ third row through indices
of the division between two integers and b. If the ¢ @nd h respectively, the first index does not affect

conditions of the Table Il are fulfilled, then the space€onditions CNW’_ Cn, and Cyp. Hence the following
variant template statement holds:

Statement 1.The set of condition®yxw, Cn, CnE

P = H{V’[A]} (28) is satisfied by templatét,; »[V,c.m|A]] (J, G, M €
where {(k,1)|k,l = £1}), if and only if it is also satisfied by

a=mods+k—1,p) templateH_1 ,[Vs,a v [A]].

5= modir +1—1.9) (29)  The same considerations apply to operator with

reference to condition€'sy, Cg, and Csg, as stated

satisfies all the condition$ reported in Proposition 2, for below.

1 <k < N,1<1< M;hence, according to Proposition 6 - Statement 2:The set of conditionsCsy , Cs, Csg

and_ 7 _theN x M CNN admits of at least one stablejs satisfied by templatét), .1 [VscumlA]] (J, G, M €

equilibrium point. B ((kD)|k,1 = £1}), if and only if it is also satisfied by
In the following section we propose a suitable algoemplate;, _1[V;.c.1/[A]].

rithm based on Proposition 8 for checking the sufficient \we point out that a similar statement does not hold for

condition provided. operatorH g, since the involved conditions (i.€l , Co ,
CEg) concern all the template rows.
IV. ALGORITHM Using the above statements, the set of choices reported

The application of Proposition 8 to th¥ and the) in Table V(a) may be reduced to a minimum. As an exam-
admissible closed sequences is explained in Tables IV(@g, let us consider cas€$8 and H9. They are identical
and IV(b). The second column of Table IV(a) containgor what concerns parametéf and are equivalent owing
the six classes of admissible closed sequences for btitithe statements above. Hence, to prove the existence of at
‘H andV operators. Such classes are readily derived frolmast one stable equilibrium point, only one case between
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H8 and H9 should be used. Class Cg (Theorem 2 of [10]):A CNN described by

Now, let us consider casé$8 and H5. According to the equation (3) presents a stable equilibrium point if there
above statements they are identical for the possible choieessts a permutatioql, 2,..n} — {A1, A2, A, } such
of parameterd and L, whereasH’5 is less restrictive than that:

H8 for what concerns parametdt. Hence, since it is . L .
sufficient that only one of the three cas&$, H8, and A - 1> Z [ A, |V
H9 is verified, only the less severe caB& enters as an =it

element of the minimum set of choices used for proving Class C¢ (Theorem 4 of [10]):A space-invariant CNN
the existence of at least one stable equilibrium point. described by equations (5) exhibits at least one stable

Following a similar strategy, it turns out that only theaquilibrium point if the template elements satisfy at least
first six choices of Table V(a), namely1, H2, H3, H4, one of the following inequalities:

H5, and H6, form a minimum, independent set for what
concerns operatck. Aoo — 1> [Aoa| + A1l + [Aro] + [A1,—1]

Finally, if operatorV and Table V(b) are considered, A, — 1> |A_; |+ |Aoa| + |A11] + A1l
a similar reasoning reduces the effectively independent
choices toV'1, V2, V3, V4, V5, and V6.

The final minimum set of possible choices, extracted Aoo — 1> |[A_1 1|+ [A 10/ +[A_11] + [Ao1]
from Table V together with the set of constrained to be 4 1~ (A ;| +[A_; 4|+ [A 10| +[A 14
verified, is shown in Table VI. ’ ' ’ ’ '

The above considerations allow us to reformulate the 0.0 = 1> [A1, 1|+ [Ao—1] +[A-1 1]+ |A-1,0|
sufficient conditions provided by Proposition 8 according Ao — 1> Ay o] + |A1,—1| + [Ao,—1| + |[A—1 1]

to the following Al ithm:
0 Ihe foflowing Atgorthm Apo— 1> |A11| + |A10| + |A1,-1] + |Ao,—1]

(30)

Ago— 1> [A_1ol + A1 1]+ [Aoa] + A1l

| - consider each one of the possible 6 = 36 cases (31)
obtained by combining a cagém, (1 <m < 6) Remark 1:Class C¢ coincides with Clas in case
of Table Vi(a) with a casé/n, (1 < n < 6) of of CNNs described by space-invariant templates (see The-
Table VI(b); orem 4 of [10]).

Il - check the constraints reported in Table VI(c), for Remark 2:Class C, is included in ClassCy and
the prescribed values of the parametérs., K  therefore in ClassCc for CNNs described by space-
andJ, M, G; invariant templates (see Theorem 1 of [10]).

Il - if such constraints are verified for at least one of gjnce our results explicitly refer to space-invariant
the 36 considered cases, then the CNN exhibits @NNs, according to the above Remarks 1 and 2 it
least one stable equilibrium point. is sufficient to compare clas€ (i.e. the class defined

We remark that the above procedure simply requir@srough Proposition 8 and the corresponding Algorithm)

to check some sets of inequalities, expressed in termith Class Cec.
the template elements; hence it exploits both the local Comparison of clas®C¢ with classC: The following
connectivity and the CNN space-invariant structure. Propositions holds:

We will show in the next Section that the above algo- Proposition 9: Class C' is not included in Clas®¢.

rithm considerably extends the class of CNNs for which  proof- Let us consider the following template:
a rigorous proof of the existence of a stable equilibrium

point is available. —a a a
A= —Qa A070 a 1 S AO,O S a (32)
V. COMPARISON WITHPREVIOUS RESULTS a a —a

In this section we report all the main classes of CNNs |t hejongs to Clas€, because it satisfies the constraints
for which the existence of at least one stable equilibriugy Taple IV(b) for the casél1 — V6. On the other hand
point has been rigorously proved. We will denote sughis seen that it does not satisfy anyone of the inequalities
classes byCy, Cp, Cc, Cp, and Cg. Then we compare (31) and therefore does not belong to Clags.
such classes with the class of CNN (hereafter denoted byrhis implies that Clas€ is not included in Clas€c.

C) that satisfies the sufficient conditions provided through m
Proposition 8 and the corresponding Algorithm presented Proposition 10: Class C¢ is not included in Clas<C.
in the previous Section. As pointed out in Section Il we Proof: Let us consider the following template:
assume that the input and the bias terms be null.

Class C4 [8]: A CNN described by equation (3) a —a —b5a
presents a stable equilibrium point if the comparison A= —a 00 Ao (33)
matrix of A — U is a non-singular M-matrix. A1 A Ain
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with
{ Apo—1=[Ao1|+|A1,—1|+]A1 0| +]|A11|+e

particular case of Clas€, when casesd1 — V1 and
H1 — V2 respectively are considered. Templates with
the any of the sign configurations shown in (38) are a
e>0 particular case of Clas€, when casesi2 — V1 and
We observe that it belongs /¢ for any positives. It H2 -V2 _re_spectivel)_/ are considered. It is derived that
is easily verified that the only two saturation regions, th&t/ass Ck is included in ClassC'.

admit of a stable equilibrium, for any positiveare S and Finally we give two examples of templates which de-

(34)

—S, where: scribe CNN belonging to clas€’ and not to the others.
S S S R Example 3:The first example is a space-invariastx
S=| 1 o+ v - 1 =t -t 1| (35 A7 CNN defined by the following templatd ;
We note that the above equilibrium point is not simple, -r +s +r s> 0
according to Definition 3 and therefore cannot be detected A; = | —s +p +s p>1 (39)
through Proposition 8. This implies that Cla6% is not -r —=s -r r>0

included in ClassC. [ | ) - A .

Remark 3:In a forthcoming paper [12], the authorsThis CNN exhibits at least one stable equilibrium point
have shown that there exist two other classes of matridé&he template elements satisfy the inequalities previously
A — U that guarantee the existence of at least one stafforted for Classe€'¢, Cp, Cg and C and summarized
equilibrium point (see Theorems 10 and 11 of [12]). Th&! Table below. From this Table it is derived that Classes
first class (denoted in [12] &) represents an extensionCc» Cp and Cg are included in Clas€.

of class Cy: it is easily proved that for space-invariant
templates clas®, is included in the class defined by (31)

by substituting> to > in each inequality. The second class

(denoted in [12] asFy) is in general different froniR,
but in case of space invariant templates it is a subclass of
Ro. By exploiting the same arguments used in the proof

of Propositions 9 and 10, it is easily derived that no one

of the classesky and C is included in the other one.
Class Cp [11]: A CNN described by equation (3)
presents a stable equilibrium point if the following condi-

Classes Conditions
Cc p—1>2(s+r)
s+2r if r>s
Cp p1>{2s+r if r<s
Cg N.A.
. r if r>s
¢ H1-V2 p1>{2s—r if r<s

tion holds: )
Vi: Yy A —1>0 (36)
J

If we assumes = 1, p = 4 andr = 2 then only

the conditions of Clas¥C' are satisfied. As an example
Comparison of classCp with class C: It is readily a 5 x 5 CNN, described by such parameters, exhibit
derived that ClasCp can be defined through the con-16,012 equilibrium points. One of them is defined by the

straints of Table IV(b) obtained by combining cadéa of

following state:

Table Vi(a) (i,e. I = L = K = (1,1)) and casé/1 of

Table VI(b) (i.e. /= M = G = (1,1)). Hence Clasp +4 -7 47 -7 +6
is included in ClassC +3 -8 +8 -8 49
Class Cg [13]: A space-invariant CNN described by T=|+3 -8 +8 -8 +9 (40)
equations (5) is stable almost everywhere and therefore +3 -8 +8 -8 +9
exhibits at least one stable equilibrium point if the signs +2 -5 +5 -5 +8

of the template elements are arranged according to anyon
of the following configurations:

%xample 4:The second example

is again a space-

Comparison of classCg with class C:
with any of the sign configurations shown

invariant N x M CNN, defined by the following template

+ o+ o+ -+ - A,
+ AO,O + — Ao}o — (37)
|+ +  + ] -+ =] +r +s +r §>0
As=| —s +p -—s p>1 (41)
r— _ _1 T 4+ = —r —s +4r r>0
+ Aoo 4 + Ao + (38)  This CNN exhibits at least one stable equilibrium point if
L -t 7] the template elements satisfy the inequalities reported in

Templates the following Table.
in (37) are a
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Classes Conditions [6]
Cc p—1>2(s+r)
Cp p_1>{§s+23 2; s -
Cg N.A.
, [8]
C: H2— V2 p—1>{;i28 z; roe )

Also in this case, ClasseS:, Cp and Cg are subsets [10]
of ClassC'. In particular, if we suppose that= 3, p = 2
andr = 2, then only the conditions of Clas§' are satis- [11]
fied. A5x5 CNN described by these parameters possesses
8 equilibrium points, one of which is the following:

[12]
+10 11 +11 —11 +6
—9 412 —12 412 -5
= | +9 —12 +12 —12 +5 (42)
-9 412 —12 412 -5
+4 -9 49 -9 44

[14]
VI. CONCLUSION

We have investigated the properties of stable equililbt!
rium points in space-invariant CNNs. We have yielded
a set of sufficient conditions (and a simple algorithm
for checking them) ensuring the existence of at least
one stable equilibrium point. Such conditions present
two main characteristics: a) they exploit both the CNN
local connectivity and the space-invariant structure and
hence they are directly expressed in terms of the template
elements; b) they are different from the results reported
in the literature [8]-[13] and include some of them. In
particular they considerably extend the class of CNN,
for which the existence of a stable equilibrium point is
rigorously proved.
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TABLE |

SET OF OPERATORS DENOTED BYC.

n=1m=1 n=1 m=1 n=1 m=0
CnwlAl = 3 Aum | ON[A]= D )" Aum | CnplA]= Anm

n=0m=0 n=0m=-—1 n=0m=-—1

n=1 m=1 n=1 m=1 n=1 m=0
ot =3 e | A= S S |t =30 D A

n=—1m=0 n=—1m=-—1 n=—1m=-—1

n=0 m=1 n=0 m=1 n=0 m=0
CSW[A] = Z ZAnm CS[A} = Anm CSE[A] = Anm

n=—1m=0 n=—1m=-—1 =—1m=-—1

10
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TABLE Il

SET OF CONSTRAINS(DENOTED BY £) OF PROPOSITION2.

Cnw([P11] > 1

On[Pul>1 Vi {1,M}

CNE[PlM] >1

CW[Pkl] >1

Yk #{1,N}

ColPr] >1 Vk#{LN}VI#{1,M}

CE[PI@]M] >1

Yk #{1,N}

Csw([Pn1] > 1

Cs[Pni] > 1 VI#{1,M}

Cse[PNnu] > 1

11



TABLE Il

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS — I: FUNDAMENTAL THEORY AND APPLICATIONS,

SET OF CONSTRAINS OFPROPOSITIONS.

Cnw [HE[VT(A)]] >1

Cn [Hei(4)]] > 1

Vi

Cne [H D (4)]] >1

Cw [HIV(A)]] >1

Vi

Co [HIDI(A)]] >1

Vi, j

Ce [HIV*(A)]] >1

Vi

Cow [HIV(A)]] >1

Cs [HIVI(4)]] >1

Vi

Csp [HIV*(4)]] >1

12
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TABLE IV
APPLICATION OF PROPOSITION8 TO THE ADMISSIBLE H AND V SEQUENCES (A) ADMISSIBLE SEQUENCES (B) CONSTRAINED TO BE
VERIFIED.
Cases Admissible Sequences Admissible Values for the Parametefs K, L, J, G, M
C([H11]P) I = (1,1
SH1 L = (1,1
(m=0,p>0,¢=0) K = (1,1
C([H-1,-1]9) I = (-1,-1)
SH2 L = (_1»_1)
(m=0,p=0,¢>0) K = (-1,-1)
C(H-11, H1,—1) I = (-1,1) or (1,-1)
SHS L = (_171) or (17_1)
(m=1,p=0,¢=0) K = (-1,1) and (1,-1)
C(H-11,[H1,1]?,H1,—1) I = (1,-1) or (—1,1) or (1,1)
Ska L = (1,-1) or (-1,1) or (1,1)
(m=1,p>0,¢=0) K = (1,-1) and (=1,1) and (1,1)
C(Ho1.1,H1.—1,[H_1.-1]2 I = (1,-1) or (-1,1) or (-1,-1)
Sirs (Mot Ha, o, [, ) L = (L-1) or (-11) or (-L-1)
(m=1,p=0,¢>0) K = (1,-1) and (-1,1) and (—1,—1)
C('H_lyl, [7‘{1’1]p77'[1,_17 [H_1,_1]q) I = (1:_1) or (_1:1) or (1:1) or (_17_1)
SHe L = (1,-1) or (-1,1) or (1,1) or (-1,-1)
(m=1,p>0,¢>0) K = (1,-1) and (-1,1) and (-1,—-1) and (—1,—1)
c([vi1]?) J = (1,1)
SVl [ ] M = (1)1)
(m=0,p>0,¢g=0) G = (1,1
C(V-1,-1]9) J o= (-1,-1)
Sva M = (-1,-1)
(m=0,p=0,¢>0) G = (-1,-1)
C(Vflyl, V1,71) J = (_171) or (17_1)
Svs M = (-1,1) or (1,-1)
(m=1,p=0,¢=0) G = (-1,1) and (1,-1)
C(V-1,1,[V1,1]",V1,-1) J = (1,-1) or (-1,1) or (1,1)
Sva M = (1,-1) or (-1,1) or (1,1)
(m=1,p>0,¢g=0) G = (1,-1) and (=1,1) and (1,1)
C(V_11,V1,-1,[V-1,-1]9) J = (1,-1) or (-1,1) or (-1,-1)
Svs M = (1,-1) or (-1,1) or (-1,-1)
(m=1,p=0,4¢>0) G = (1,-1) and (-1,1) and (—1,—1)
C(V_1.1,V1.1]P, V1.1, [V_1.1]2 J = (1,-1) or (-1,1) or (1,1) or (—1,-1)
Sve Vo1t Pl V11, o1, ) M = (1,-1) or (-1,1) or (1,1) or (—1,-1)
(m=1,p>0,¢>0) G = (1,-1) and (-1,1) and (—1,—1) and (—1,—1)
@

CNW [H[ [VJ (A)”>1

Cn [Hr Vg (A)]]>1 CnE [Hr Vi (A)]]>1

Cw [Hi Vs (A)]] >1

Co [Hk Va (4)]]>1 Cg [Hk VM (A)]] >1

Csw [Hr Vs (4)]]>1

Cs [Hr [Va (4)]]>1 Csg [Hr [Var (4)]]>1

(b)

13
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TABLE V
TOTAL NUMBER OF POSSIBLE CHOICES(A) FOR THE PARAMETERS/, L AND K; (B) FOR THE PARAMETERSJ, M AND G

1 L K Case
(1,1) (1,1) (1,1) H1
(-1,-1) | (-1,-1) | (-1,-1) H2
(1,-1) 1,-1 | (1,-1) and (=1,1) H3
(1,-1) (-1,1) (1,-1) and (-1,1) H4
(-1,1) (1,-1) | (1,=1) and (=1,1) H5
(-1,1) (-1,1) | (1,=1) and (=1,1) H6
(1,-1) (1,1) (1,-1) and (-1,1) and (1,1) HT
(-1,1) (1,1) (1,-1) and (-1,1) and (1,1) HS
(1,1) (1,-1) | (1,-1) and (-1,1) and (1,1) H9
(1,1) (-1,1) | (1,-1) and (-1,1) and (1,1) H10
1,-1) | (-1,-1) | (1,-1) and (=1,1) and (—1,—1) H11
(-1,1) | (-1,-1)| (1,-1) and (-1,1) and (—1,—1) H12
(-1,-1) | (1,-1) | (1,-1) and (-1,1) and (-1,-1) H13
(-1,-1) (-1,1) (1,-1) and (-1,1) and (-1,-1) H14
(1,1) (-1,-1) | (1,-1) and (-1,1) and (1,1) and (-1,-1) | H15
(-1,-1) (1,1) (1,-1) and (-1,1) and (1,1) and (—1,-1) | H16
@
J M G Case
(L,1) (L,1) (L1 Vi1
(-1,-1) | (-1,-1) | (-1,-1) V2
(1,-1) (1,-1) (1,-1) and (—1,1) V3
(1,-1) (-1,1) (1,-1) and (—1,1) V4
(-1,1) (1,-1) (1,-1) and (-1,1) V5
(-1,1) (-1,1) (1,-1) and (—1,1) Vo6
(1,-1) (1,1) (1,-1) and (—1,1) and (1,1) V7
(-1,1) 1,1) (1,-1) and (-=1,1) and (1,1) V8
(1,1) (1,-1) (1,-1) and (-1,1) and (1,1) V9
(1,1) (-1,1) | (1,-1) and (-1,1) and (1,1) V10
1,-1 | (-1,-1)| (1,-1) and (-1,1) and (-1,—1) Vil
(-1,1) (-1,-1) | (1,-1) and (-1,1) and (-1,-1) V12
(-1,-1) (1,-1) (1,-1) and (-1,1) and (-1,-1) V13
(-1,-1) | (-1,1) | (1,-1) and (-1,1) and (-1,-1) V14
(1,1) (-1,-1) | (1,-1) and (-1,1) and (1,1) and (-1,—-1) | V15
(-1,-1) (1,1) (1,-1) and (-1,1) and (1,1) and (-1,—-1) | V16

(b)
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TABLE VI
MINIMUM SET OF POSSIBLE CHOICES EXPLOITED BY THE PROPOSED ALGORITHMA) FOR THE PARAMETERSI, L AND K ; (B) FOR THE
PARAMETERSJ, M AND G; (C) CONSTRAINED TO BE VERIFIED

I L K Case
(1,1) (1,1) (1,1) H1
(71,71) (71,71) (71,71) H2
L-1 | L-) | ,—-1) and (=11 H3
1,-1) | (-1,1) | 1,-1) and (-1,1) H4
(-1,1) | 1,-1) | a,-1) and (-1,1) H5
(-1,1) | (-1,1) | (1,-1) and (-1,1) H6
(@
J M G Case
(1,1) (1,1) (1,1) Vi
(—1,—1) (=1,-1) | (-1,-1) V2
L-1) | L,-1 | 1,-1) and (-1,1) V3
L-1 | Ly | ,—1) and (-L1) V4
—11) | L-1) | (1L-1) and (-1,1) Vs
(-1,1) | (-1,1) | a,-1) and (-1,1) V6
(b)
CNW [H[ [VJ (A)”>1 CN ['H] [VG (A)]]>1 CNE [HI [VA{ (A)H>1
Cw [Hi [Vs (A)]] >1 Co [Hk Va (4)]]>1 Cg [Hk [Vm (A)]] >1
Csw [Hi Vs (A)]]>1 Cs [Hi Ve (A)]]>1 Csi [Hi VM (4)]]>1
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