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Abstract—Synchronization is deemed to play an important role
in information processing in many neuronal systems. In this work,
using a well known technique due to Pecora and Carroll, we in-
vestigate the existence of a synchronous state and the bifurcation
diagram of a network of synaptically coupled neurons described by
the Hindmarsh–Rose model. Through the analysis of the bifurca-
tion diagram, the different dynamics of the possible synchronous
states are evidenced. Furthermore, the influence of the topology on
the synchronization properties of the network is shown through an
example.

Index Terms—Bifurcation, biological systems, networks, non-
linear oscillators, synchronization.

I. INTRODUCTION

D URING the last few years networks of bio-inspired neu-
rons have interested an increasing number of researchers

in all branches of science. In particular, spiking neurons have
attracted the interest because many studies consider this be-
havior an essential component in information processing by the
brain [1]. In this class of neurons, bursting neurons are of rele-
vant interest since they characterize a variety of biological os-
cillators. The electrical potential of these neurons, which typ-
ically is the state variable that contains the main information,
undergoes a succession of alternating active and silent phases
in which, respectively, it has a spiking behavior (very fast os-
cillations) and it evolves slowly without oscillations. Further-
more, the notion of synchronization is related to several central
issues of neuroscience [2]; synchronization seems to be a central
mechanism for neuronal information processing within a brain
area as well as for communication between different brain areas.
For example, synchronization between areas of the visual cortex
and parietal cortex, and between areas of the parietal and motor
cortex was observed during the visual-motor integration task in
awake cats [3]. Direct participation of synchrony in a cognitive
task was experimentally demonstrated in humans [4]. This mo-
tivates the investigation of the conditions for synchronization
in networks of bursting neurons [5], [6]. Among many simple
bursting models, the Hindmarsh–Rose (HR) neuron [7] is fairly
simple and popular. It is described by a system of three coupled
first-order differential equations in which the first state variable
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shows the succession of alternating active and silent phases. The
synchronization conditions of a network of HR neurons have
been studied in several papers (for example see [5], [6], [8]) and
more detailed conditions have been recently introduced in [9],
[10].

In this paper we focus on a network of synaptically coupled
HR neurons and we derive its synchronization conditions, re-
sorting to the well established technique proposed by Pecora
and Carroll [11]. As a first result of our investigation, using
the above-mentioned technique, the approximate results given
in [6] are retrieved and their limits are evidenced. Furthermore,
it turns out that the synchronous behavior may be different from
that of an isolated neuron and it has to be evaluated resorting to
a time-domain analysis, using the coupling strength as bifurca-
tion parameter. Hence, the second aim of this paper is to give a
complete analysis of the possible synchronous states by deter-
mining the corresponding bifurcation diagram. Finally, it will be
shown that the synchronization properties still depend—even if
not strongly—on the topology of the network.

II. PRELIMINARIES

The HR neuron model [7]—originally proposed to model the
synchronization of firing of two snail neurons [12]—can be gen-
eralized as follows [13], [14]:

(1)

where represents the membrane potential, usually consid-
ered as the natural output of the cell, and are the re-
covery and the adaptation variables taking into account, respec-
tively, fast and slow ion currents and dots denote time deriva-
tives. The external stimulus is given by constant and input .
Furthermore, is the time constant of the slow ion current and
the functions , , and are chosen to display the
generation of bursts of spikes and are usually third-, second-,
and first-order polynomials, respectively.

In view of a future comparison, let us use the same parameters
as in [6], [8]: , , and

, where , , , , ,
, , , and, for an isolated cell, .

It follows that the studied cells are described by the following
equations:

(2)

With the free parameters fixed at the chosen values, the time
evolution of the state variables is periodic. The coupling in a

1549-7747/$25.00 © 2008 IEEE



CHECCO et al.: SYNCHRONIZATION IN NETWORKS OF HR NEURONS 1275

network of such neurons can be modeled in different ways.
In this work we focus on synaptic coupling between the vari-
ables. In the simplest case where time delays and internal vari-
ables can be neglected, the synaptic coupling is often approx-
imated by a static sigmoidal nonlinear input-output function
with a threshold and saturation [14]:

(3)

As in [6], the free parameters are chosen to be and
. The evolution of the -th neuron of the network is

ruled by

(4)

where is the coupling strength and are the elements of the
adjacency matrix , defined as follows: ;
if neurons and are connected to each other, 0 otherwise.
Furthermore, , where is the reversal po-
tential, assumed to be . Letting and

, where denotes transpose, the above
equations can be recast as follows:

(5)

where and are the elements
of the weighted adjacency matrix .

III. MODIFIED MASTER STABILITY FUNCTION

In order to obtain the conditions of identical synchronization,
the master stability equation/function approach is used [11], be-
cause it permits to separate the contribute of the identical iso-
lated cells and of the topology of the network in the synchro-
nization conditions. It is important to remark that this approach
permits to verify if the synchronous state is (locally) stable or
not, that is if the state vector of the network, starting sufficiently
close to the synchronous state, converges to it. By considering
the identical synchronization conditions, i.e.

, it follows that the synchronous state exists only if the
sum of is constant with respect to , i.e. all the nodes have
identical degree [6]:

(6)

The evolution of the synchronous state is then described by the
following system of ordinary differential equations:

(7)

The Master Stability Equation (MSE) associated to (5) is (for
details see [11], [15])

(8)

Fig. 1. Sign of the modified MSF with bounds on the second eigenvalue of�
(dotted lines) and synchronization region (dashed bold line) corresponding to
� � ��.

where is the Jacobian matrix of the function estimated
on the synchronization manifold , is the first component
of the synchronization manifold, is the derivative
of with respect to evaluated in , and are the
eigenvalues of the weighted adjacency matrix . The largest
Lyapunov exponent of the MSE is known as the
Master Stability Function (MSF) and it allows one to identify
the synchronous conditions: the synchronous state is stable, i.e.
the network synchronizes, if all the eigenvalues of the weighted
adjacency matrix (apart the largest one) lie in the
so-called synchronization region, that is the region where the
MSF is negative. In the case under investigation, is
symmetric. It follows that its eigenvalues are real and both the
MSE, (8), and the MSF do not depend on , i.e. .
Furthermore, the eigenvalues of can be expressed as ,
being a generic eigenvalue of the adjacency matrix . Dif-
ferently from the original MSF [11], a global parameter related
to the structure of the network can be identified in (7) and (8): the
product between and . Defining , a modified MSE
is obtained, which is hence a function of both and , namely

. Fig. 1 shows the curve where . It was
obtained (a) by using the algorithm described in [16] to eval-
uate the largest Lyapunov exponent of (8) as and varied,
with , and (b) by determining the values of and for
which via a bisection method. It turns out that, for
a given value of , the synchronization region is the vertical
straight line below the curve , passing through the con-
sidered value (dashed bold line in Fig. 1). This result is valid
for other values of the neuron parameters as well. Hence, the
considered networks of HR neurons are Class-A networks (see
[15]): for a given value of , they synchronize if
where is the value of the curve of Fig. 1 at

, and is the second largest eigenvalue of the adjacency
matrix , whose spectrum is .

IV. SYNCHRONIZATION PROPERTIES

Thanks to the results obtained in the previous section, fixed
a network, i.e. its topology (described by ) and its coupling
strength , the synchronization conditions can be evaluated and
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Fig. 2. Simplified bifurcation diagram, reporting only the attractors, of the syn-
chronous state equation with respect to � parameter.

in this Section they will be investigated in details. Since we are
dealing with class-A networks, the synchronous behavior is con-
trolled by the second largest eigenvalue . Hence, given an
adjacency matrix and a coupling strength , it is possible to
predict the synchronization behavior of the network as follows:
1) compute the second eigenvalue of and the row sum ; 2)
in Fig. 1, locate the synchronization region corresponding to the
resulting value of . If the point lies inside
this region, then the network is expected to synchronize. Recall
that the first eigenvalue of is , so the largest eigenvalue
of is , hence the straight line
bounds the whole spectrum of from above. Moreover ,
the second eigenvalue of , always satisfies the inequality (see
[17]): , so the second eigenvalue of is al-
ways greater or equal to , where is the number
of neurons in the network. In Fig. 1, the straight lines
and for , 10 and 100 are superimposed
(dotted lines) to the curve. From this figure, it is easy to
see that—to a good approximation—for the second
eigenvalue of is always in the stable region for every value
of and , and hence, to a first approximation, synchrony does
not depend on topology. This is coherent with [6], [8], where
the estimated synchronization condition

(9)

is suggested, being the critical value to get syn-
chronization in a network composed of two mutually coupled
neurons . However, since the straight line
does not exactly coincide with the curve , for small
(3 or 4 for example) the limit to obtain stable synchronization
can be a little lower. Hence, to a higher degree of approxima-
tion, we may expect that (i) synchronization is possible even for

and (ii) topology still influences synchronization to
some extent. These interesting features will be highlighted in
some of the examples of Section VI.

V. BIFURCATION DIAGRAM

In the case of synaptic coupling, the synchronous equation
(7) is not equal to the equation of an isolated HR neuron (2)
any more. Then, if the synchronization condition is verified, the
state variables of all the cells synchronize, but the time evolution
of the synchronous state is not known and depends on the pa-
rameter , which accounts for coupling strength and cell degree
[see (7)]. This fact motivates the investigation of the dynamic
behavior when is varied, i.e., of the bifurcation diagram with
respect the parameter . Using as bifurcation parameter, we
have thoroughly investigated the synchronous behavior by ex-
tensive numerical simulations of (7). Fig. 2 shows a simplified

version of the bifurcation diagram in which only a qualitative
description of the attractors has been reported. By looking at
the time evolution of the membrane potential [see (1)], it
was possible to identify five different types of attractors in five
not overlapping intervals and one isolated point at . In the
isolated point R0 and in R2 region
a spiking burst behavior is exhibited, i.e. there is a succession of
two alternating phases (bursts) and the spikes are only in the ac-
tive ones. Note that the point R0 corresponds to an isolated HR
neuron. In R1 region a spike behavior takes
place. The synchronous behavior is composed of oscillations on
bursts in region R3 . The synchronous state
exhibits a periodic behavior (only burst phases) in R4 region

. Finally, in R5 region the behavior reduces to
a stable equilibrium point. It is worth pointing out that, due to
results obtained in the previous Section, the behavior of region
R1 can never be observed. This analysis reveals that one of the
most interesting behaviors, the spiking on bursts, is reached in
the windows between 1.224 and 1.285. Fig. 1 reveals that, for
small networks, synchronization can be achieved even for these
values of .

As a final remark, let us stress that the results of this and the
previous Sections were obtained for a broad range of values
for and , i.e. are valid for different topologies and values
of coupling strength. So Figs. 1 and 2 allow us to analyze a
given network, saying whether it can synchronize or not and
on which particular synchronous state. This will be illustrated
in the examples of the following Section.

VI. EXAMPLES

As a first example, let us consider a network composed of just
four HR neurons , whose topology is described by the
following adjacency matrix

(10)

from which , , , and . If the
coupling strength is , the parameter is

and, from the curve, . It follows
that the network cannot synchronize because

. Fig. 3 shows the time evolution of the first state variable
of the first neuron and the global error , defined as

(11)

where is the standard deviation and are,
respectively, the -dimensional time-varying vectors of the
first, second and third state variables of the cells. In partic-
ular, if and only if the cells synchronize on the
same behavior. In this example the error does not converge to
zero and hence the network does not synchronize, as predicted.
On the other hand, if the coupling strength is increased to

, the parameter is and, from the
curve, . It follows that the network

synchronizes because . Furthermore, the
synchronous behavior is composed of damped oscillations on
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Fig. 3. Time evolution of the first state variable of the first neuron (upper) and
(lower) of the network with � � ���� and adjacency matrix (10).

Fig. 4. Time evolution of the first state variable of the first neuron (upper) and
global error (lower) of the network with � � ���� and adjacency matrix (10).

Fig. 5. Time evolution of the first state variable (upper, transient dropped off)
and of the global error (lower) for a network of neurons with � as in (12) and
� � ������.

burst, as described by the bifurcation diagram: . These
results are confirmed by the simulations shown in Fig. 4.

As a second example, we consider a network which fails to
satisfy the approximate condition of (9) but satisfies the con-
dition given by the MSF/MSE approach of Fig. 1. Consider a

Fig. 6. Two networks belonging the class ���� �	 with different topologies.
The cells are numbered clockwise starting from the black one.

Fig. 7. State evolution of the cell 1 of the network whose topology is reported
in Fig. 6(a).

network of three neurons mutually coupled in an all-to-all con-
figuration, so that its adjacency matrix is

(12)

from which , and . With ,
we have , and hence the approxi-
mated condition of (9), as it is a sufficient one, provides no in-
formation about the synchronization properties. On the contrary,
the more precise criterion obtained from Fig. 1 gives

and hence this simple network
should synchronize. Moreover, the bifurcation diagram predicts
spikes on bursts as synchronous behavior. Numerical simula-
tions of this network, shown in Fig. 5, confirm our forecast. As
a last example, let us consider classes of networks of HR neu-
rons defined as the set of networks characterized by
the same number of nodes and the same node degree and
take the class and the coupling strength .
The value is estimated from the curve of Fig. 1:

. It follows that a network synchronizes if and only
if . Let us consider a first network belonging
to , characterized by the topology shown in Fig. 6(a):
the adjacency matrix , not reported for lack of space, has been
computed numbering clockwise the cells starting from the black
one. The two largest eigenvalues of the associated adjacency
matrix are , . It follows that the consid-
ered network synchronizes because .
The evolution of the state variables of the cell 1 and the global
error are reported, respectively, in Fig. 7 and Fig. 8: the states of
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Fig. 8. Global error of the evolution of the network whose topology is reported
in Fig. 6(a).

Fig. 9. Enlargement of the state evolution, after the transient, of two cells of
the network whose topology is reported in Fig. 6(b): the solid line refers to cell
1 and the dotted line to cell 9.

Fig. 10. Enlargement of the global error of the evolution of the network whose
topology is reported in Fig. 6(b) in the same time interval used in Fig. 9.

the cells synchronize because the global error converge to zero.
Furthermore, since , the time evolution shows os-
cillations on burst, as predicted by the bifurcation diagram of
Fig. 2. The second network is characterized by the topology
shown in Fig. 6(b) in which the cells are numbered following
the same rule used for the previous example. The three largest
eigenvalues of the associated adjacency matrix are ,

. It follows that the considered network
should not synchronize because .
In fact, the states of the cells do not synchronize as evidenced
by Figs. 9 and 10. These figures show the evolution, after a suffi-
cient long transient, of the state of cells 1 and 9, respectively,
and the corresponding global error in a suitable time interval
to point out the differences. In conclusion, networks belonging
to the same class and with the same coupling strength may be-
have differently, depending on their topology, that still influ-
ences synchronization properties.

VII. CONCLUSION

In this work, using the technique due to Pecora and Carroll,
based on the MSE and the MSF, we have investigated the ex-
istence of synchronous states and the bifurcation diagram of
networks of synaptically coupled neurons described by the HR
model. In a quite natural way, the bifurcation parameter, used
for both the generation of a modified MSF and the bifurcation
diagram, turns out to be the product of the coupling strength
by the node degree . Through the analysis of the bifurcation
diagram and of the modified MSF as the bifurcation parameter
is varied, the different dynamics of the possible synchronous
states have been evidenced. Furthermore, the influence of the
topology on the synchronization properties of the network has
been shown through an example.

REFERENCES

[1] X.-J. Wang and J. Rinzel, “Oscillatory and bursting properties of neu-
rons,” in Handbook of Neural Networks and Brain Function, M. Arbib,
Ed. Cambridge, MA: MIT Press, 1995, pp. 686–691.

[2] W. Singer and C. M. Gray, “Visual features integration and the
temporal correlation hypothesis,” Annual Rev. Neurosci., vol. 18, pp.
555–586, 1995.

[3] P. R. Roelfsema, A. K. Engel, P. Knig, and W. Singer, “Visuomotor in-
tegration is associated with zero time-lag synchronization among cor-
tical areas,” Nature, vol. 385, pp. 157–161, 1997.

[4] E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, and
F. J. Varela, “Perception’s shadow: Long-distance synchronization of
human brain activity,” Nature, vol. 397, pp. 430–433, 1999.

[5] W. T. Oud and I. Tyukin, “Sufficient conditions for synchronization
in an ensemble of Hindmarsh and Rose neurons: Passivity-based ap-
proach,” in Proc. IFAC NOLCOS 2004, Stuttgart, Germany, 2004, pp.
1–3.

[6] I. Belykh, E. de Lange, and M. Hasler, “Synchronization of bursting
neurons: What matters in the network topology,” Phys. Rev. Lett., vol.
94, no. 13, pp. 188101(1)–188101(4), May 2005.

[7] J. L. Hindmarsh and R. M. Rose, “Model of neuronal bursting using
three coupled first order differential equations,” Proc. Royal Soc. B,
vol. 221, no. 1222, pp. 87–102, Mar. 1984.

[8] G. X. Qi, H. B. Huang, H. J. Wang, X. Zhang, and L. Chen, “General
conditions for synchronization of pulse-coupled bursting neurons in
complex networks,” Europhys. Lett., vol. 74, no. 4, pp. 733–739, 2006.

[9] P. Checco, M. Righero, M. Biey, and L. Kocarev, “Information pro-
cessing in networks of coupled Hindmarsh-Rose neurons,” in Proc.
NOLTA 2006, Bologna, Italy, 2006, pp. 671–674.

[10] P. Checco, M. Biey, M. Righero, and L. Kocarev, “Synchronization and
bifurcation in networks of coupled Hindmarsh-Rose neurons,” in Proc.
ISCAS 2007, New Orleans, LA, 2007, pp. 1541–1544.

[11] L. M. Pecora and T. L. Carroll, “Master stability functions for syn-
chronized coupled systems,” Phys. Rev. Lett., vol. 80, no. 10, pp.
2109–2112, Mar. 1998.

[12] J. L. Hindmarsh and P. Cornelius, “The development of the Hindmarsh-
Rose model for bursting,” in Bursting: The Genesis of Rithm in the
Nervous System, S. Coombes and P. Bressloff, Eds. Singapore: World
Scientific, 2005, ch. 1, pp. 3–18.

[13] E. M. Izhikevich, “Which model to use for cortical spiking neurons?,”
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep. 2004.

[14] M. Bazhenov, R. Huerta, M. I. Rabinovich, and T. Sejnowski, “Coop-
erative behavior of a chain of synaptically coupled chaotic neurons,”
Physica D, vol. 116, no. 3–4, pp. 392–400, Jun. 1998.

[15] P. Checco, M. Biey, and L. Kocarev, “Synchronization in random net-
works with given expected degree sequences,” Chaos, Solitons, Frac-
tals, vol. 35, no. 3, pp. 562–577, Feb. 2008.

[16] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining
Lyapunov exponents from a time series,” Physica D, vol. 16, pp.
285–317, 1985.

[17] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math. J., vol.
23, no. 98, pp. 298–305, 1973.


