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Abstract

Synchronization in random networks with given expected degree sequences is studied. We also investigate in details
the synchronization in networks whose topology is described by classical random graphs, power-law random graphs
and hybrid graphs when N!1. In particular, we show that random graphs almost surely synchronize. We also show
that adding small number of global edges to a local graph makes the corresponding hybrid graph to synchronize.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The study of complex systems pervades all of science, from cell biology to ecology, from computer science to mete-
orology. A paradigm of a complex system is a network [1], where complexity may come from different sources: topo-
logical structure, network evolution, connection and node diversity, and/or dynamical evolution. Examples of networks
include food webs [2,3], electrical power grids, cellular and metabolic networks, the World-Wide Web [4], the Internet
backbone [5], neural networks, and co-authorship and citation networks of scientists. These networks consist of nodes
which are interconnected by a mesh of links. The macroscopic behavior of a network is determined by both the dynam-
ical rules governing the nodes and the flow occurring along the links.

Real networks of interacting dynamical systems – be they neurons, power stations or lasers – are complex. Many
real-world networks are small-world [6] and/or scale-free networks [7]. The presence of a power-law connectivity dis-
tribution, for example, makes the Internet a scale-free network. The research on complex networks has been focused so
far on the their topological structure [8]. However, most networks offer support for various dynamical processes. In this
paper we propose to study one aspect of dynamical processes in non-trivial complex network topologies, namely their
synchronization behavior.

The general question of network synchronizability, for many aspects, is still an open and outstanding research prob-
lem [9,10]. There are, in general, two classes of results which give criteria under which a network of oscillators synchro-
nizes. The first class of results uses Lyapunov’s direct method by constructing a Lyapunov function which decreases
along trajectories and gives analytical criteria for local or global synchronization. For example, in [11], the authors gave
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sufficient conditions for an array of linearly coupled systems to synchronize. A typical result states that the array will
synchronize if the non-zero eigenvalues of the coupling matrix have real parts that are negative enough. The work in
[11] has been extended and generalized in [12–16].

The second class of results uses linearized equations around the synchronization manifold and computes numerically
the Lyapunov exponents of the variational equations. In this context, an important contribution has been given by Pec-
ora and Carroll in [17], where, for a network of coupled chaotic oscillators, they derived the so-called Master Stability

Equation (MSE), and introduced the corresponding Master Stability Function (MSF). Consequently, the stability anal-
ysis of the synchronous manifold [17] for the network under consideration can be decomposed in two sub-problems.
The first sub-problem consists of deriving the MSF for the network nodes, i.e. to study in which region, of the complex
plane the MSE admits a negative largest Lyapunov exponent (LE). The second sub-problem is to verify whether the
eigenvalues of the so-called connectivity matrix [18] of the network, apart from the zero-eigenvalue, lie in the synchro-
nization region(s) (see also [17–19]). This approach is particularly relevant because the MSE depends only on the node
local dynamics and on the coupling matrix [18]. It turns out that the mathematical problem has the same dimension as
the single network node. For example, when considering a network of coupled Rössler systems [20], the master stability
equation has dimension three.

Recently, the synchronization phenomenon in scale-free dynamical networks has been investigated in [21–25]. In
[22], the authors found that networks with a homogeneous distribution of connectivity are more synchronizable than
heterogeneous ones, even though the average network distance is larger. They presented numerical computations and
analytical estimates on synchronizability of the network in terms of its heterogeneity parameters. Robustness and/or
fragileness of the networks’ synchrony is discussed in [21,23,24]. Network synchronization and de-synchronization pro-
cesses in a scale-free network are illustrated by a prototype composing of Henon maps. A new general method to deter-
mine global stability of total synchronization in networks with different topologies is proposed in [26,27]. This method
combines the Lyapunov function approach with graph theoretical reasoning. In particular, the method is applied to the
study of synchronization in rings of 2K-nearest neighbor coupled oscillators. This method is extended to the blinking
model of small-world networks where, in addition to the fixed 2K-nearest neighbor interactions, all the remaining links
are rapidly switched on and off independently of each other. In [25], the authors studied synchronization in weighted
complex networks and showed that the synchronizability of random networks with a large minimum degree is deter-
mined by two leading parameters: the mean degree and the heterogeneity of the distribution of node intensity, where
the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and
weights.

In this work, following [17], we first review the properties of the master stability function. Namely, in Section 2 it is
shown that for typical systems only three main scenarios may arise as a function of coupling strength: the synchroniza-
tion region may have the following forms: an interval (am,+1), union of intervals ðaðjÞm ; a

ðjÞ
M Þ, or an empty set. Then, we

study synchronization in complex networks topologies. Section 3 is devoted to the analysis of synchronization properties
of networks whose topology is described by classical and power-law random graph models. We prove that random graph
networks synchronize. In this paper we consider the model M(N,b,d,m), where N is the number of vertices, b > 2 is the
power of the power law, d is the expected average degree, and m is the expected maximum degree, such that m2 = o(Nd).
We prove the following theorem: Let M(N,b,d,m) be a random power-law graph on N vertices, for which d grows with
N. Assume further that d/m approaches 0 when N!1. Then the class-A network M(N,b,d,m) asymptotically almost
surely synchronizes for arbitrary small coupling r and class-B network M(N,b,d,m) asymptotically almost surely does
not synchronize. In Section 4, we study synchronization properties of hybrid networks. We prove that although local
graph networks do not synchronize for large N, adding only a small number of global edges makes these hybrid networks
to synchronize. We close our paper with conclusions.
2. Preliminaries: master stability function

In this section, following [17], we first review the properties of the master stability function.

2.1. Introduction

Let us consider a network comprising N identical nodes, each being a (chaotic) oscillator. Let xi be the m-dimen-
sional vector of dynamical variables for the ith node. Let the dynamics of each node be described by
_xi ¼ f ðxiÞ þ
XN

k¼1

Dikxk ; i ¼ 1; . . . ;N ; ð1Þ
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where f : Rm ! Rm describes the oscillator equations, which we assume to admit a chaotic attractor [20], while Dik are
m · m real matrixes. Assume that each matrix, Dik, has the form: Dik = gikH, where gik is a real number and H is a
m · m diagonal matrix, same for all nodes, called coupling matrix. The coupling matrix H = (hij) contains the informa-
tion about which variables are utilized in the coupling and is defined as hii = 1, if the ith component is coupled, and
hii = 0, otherwise. Let us denote with G = (gij) an N · N matrix called the connectivity matrix, because it specifies which
nodes are connected to which and the coupling strength. Recall that the direct product of two matrixes A = (aij) and B is
given, in block form, by
A� B ¼

a11B a12B . . . a1N B

a21B a22B . . . a2N B

..

. ..
. ..

. ..
.

aN1B aN2B . . . aNN B

0
BBBB@

1
CCCCA:
Then, we can rewrite Eq. (1) in a more compact form using the direct product of matrixes
_x ¼ FðxÞ þ ðG �HÞx; ð2Þ
where FðxÞ : RmN ! RmN , x = (x1, . . . ,xN)T and is defined as F(x) = (f(x1), . . . , f(xN))T. The (N � 1) constraints:
x1 = x2 = � � � = xN, define the so-called synchronization manifold [17]. The invariance of this manifold requires that:P

jgij ¼ 0, "i. To determine the stability of the synchronization manifold, one should evaluate the Lyapunov exponents
along the directions transverse to the manifold itself. In this respect, the variational equation of the system (2) is
_n ¼ ½JF þ JG�H �n; ð3Þ
where n = (n1,n2, . . . ,nN)T and JF and JG�H, are the Jacobian matrixes of F and G � H, respectively. By noting that the
matrixes G and H do not depend on x and on the synchronization manifold, then JF = IN � Jf, where IN is the N · N

identity matrix. It follows that Eq. (3) can be rewritten as:
_n ¼ ½IN � Jf þ G �H �n: ð4Þ
Since G is a constant N · N matrix, the matrix that diagonalizes G is also constant and can be applied directly to (4).
Thus, we have
_fk ¼ ½Jf þ ckH �fk ð5Þ
with k = 1, . . . ,N and ck are the eigenvalues of the connectivity matrix G. Note that, for k = 1, Eq. (5) is the variational
equation of the synchronization manifold, i.e. the eigenvalue c1 = 0. On the other hand, the other values of k > 1 cor-
respond to all transverse eigenvectors. The two matrixes in (5), Jf and H, are constants with respect to k, and only the
eigenvalues ck vary. Thus, one can reformulate the above equation as follows:
_f ¼ ½Jf þ ðaþ ıbÞH �f; ð6Þ
that is the master stability equation. This equation depends on the two parameters a and b, and the corresponding larg-
est Lyapunov exponent, which is also a function of a and b, represents the master stability function.

2.2. Properties of the master stability function

We now study the properties of MSF. Let us write the master stability equation (6) as
_f ¼ Jf; ð7Þ
where J = [Jf + (a + ıb)H]. In the following, we denote with UJ(t, t0) the transition matrix of the system (7) (see [28]).
The MSE (7) is defined by the matrix J which, in turn, comprises two terms. The first term is given by the Jacobian
matrix Jf of f, that is a real m · m matrix, for ordinary systems. The second term is the real matrix, H, multiplied
by (a + ıb), which is a complex number. Therefore, the matrix J and the transition matrix UJ(t, t0) of MSE (7) are com-
plex. The m transition matrix eigenvalues are complex (but not conjugate, in general, since the matrix is not real).

We recall the definition of Lyapunov exponents
ki ¼ lim
t!1

1

t
ln jmiðtÞj; ð8Þ
where mi(t) denotes the eigenvalues of the transition matrix (solution of the dynamical system). We observe that,
according to the definition (8) of Lyapunov exponents, only the absolute value of the eigenvalues, mi, comes into play.
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Thus, the Lyapunov exponents are the same for (a + ıb) and its conjugate. So, it follows that the master stability func-
tion is symmetric with respect to the real a-axis.

2.2.1. Coupling matrix H equal to the identity matrix

The study of the properties of the MSF can be subdivided into two cases, depending on whether the connectivity
matrix H coincides with the identity matrix or not. In the former case, the Jacobian matrix J, used for evaluating
the Lyapunov exponents, is given by
J ¼ Jf þ ðaþ ıbÞI : ð9Þ
Proposition 1. If the coupling matrix H is equal to the identity matrix I, then the Lyapunov exponents ki(a,b) of the master

stability equation (7) are
kiða; bÞ ¼ kið0; 0Þ þ a: ð10Þ
Proof. In order to prove Eq. (10), we consider the following linear time-variant differential equation (of order m):
d
dt UAðt; t0Þ ¼ AðtÞUAðt; t0Þ;
UAðt0; t0Þ ¼ I ;

�
ð11Þ
where UA(t, t0) is the transition matrix. Its solution is given by the Peano–Baker series [28]
UAðt; t0Þ ¼ I þ
Z t

t0

dt1Aðt1Þ þ
Z t

t0

dt1

Z t1

t0

dt2Aðt1ÞAðt2Þ þ � � � : ð12Þ
Then, we can rewrite the solution as
UAðt; t0Þ ¼ I þ
Z t

t0

dt1TfAðt1Þg þ
1

2!

Z t

t0

dt1

Z t

t0

dt2TfAðt1ÞAðt2Þg þ � � � ,T e

R t

t0
dt1Aðt1Þ

� �
; ð13Þ
where T{ Æ} is the time order-product
TfAðt1ÞAðt2Þ � � �AðtmÞg ¼ Aðti1ÞAðti2Þ � � �AðtimÞ;
ti1 P ti2 P � � �P tim ;

fti1 ; ti2 ; . . . timg ¼ ft1; t2; . . . tmg:

8><
>: ð14Þ
From Eq. (13), it is straightforward to verify that the following equality holds true:
T e

R t

t0
dt1ðAðt1ÞþcIÞ

� �
¼ T e

R t

t0
dt1Aðt1Þ

� �
� T e

c
R t

t0
dt1I

� �
¼ T e

R t

t0
dt1Aðt1Þ

� �
� ecðt�t0Þ: � ð15Þ
Note that the largest Lyapunov exponent depends only on the (largest of the) LEs of the original dynamical system
f , and on a. The MSF is then a plane with slope equal to a, and it does not depend on the value of b. In particular, the
MSF is equal to zero for a = �kmax(0,0) and negative in the left half-plane, with respect to the latter straight line.
2.2.2. Coupling matrix H not equal to the identity matrix

In this case, we use an asymptotic method with respect the parameters a and b to estimate the largest Lyapunov
exponent of the master stability equation. It is easy to see that, if the parameter a is positive and the absolute value
ja + ıbj tends to infinity, the largest Lyapunov exponent is approximatively equal to a. If a is negative, with the same
condition for the above absolute value, the largest Lyapunov exponent is constant
kmaxða; bÞ !
a if a > 0;

r if a < 0;

�
jaþ ıbj ! 1; ð16Þ
where r is the conditional LE [18], constant with respect a and b.
We remark that (16) is true for ja + ıbj tending to infinity. In practice, this condition is met provided that ja + ıbj is

sufficiently larger than all entries in the transition matrix of the variational equation, for a single node (i.e. the master
stability equation with parameters a = b = 0). This fact has been confirmed by computing the master stability function
for several different dynamical systems. This also means that, if ja + ıbj is sufficiently large (with respect to all entries of
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UJ(t, t0) in the case a and b equal to zero), the MSF is constant if a is negative and approaches a plane with slope equal
to a, otherwise. Moreover, the MSF depends on b only when the condition ja + ıbj ! 1 is not fulfilled.

2.3. Synchronization regions

We now consider the following form of Eq. (2):
Table
Examp

H

h11

1
0
0
1
1
0
1

The C
for wh
hij = 0
_x ¼ FðxÞ þ rðL�HÞx; ð17Þ
where r is the overall strength of coupling, and the N · N matrix L is the Laplacian matrix representing the connection
topology of the network: lij = lji = �1 if nodes i and j are connected, lii = ki if node i is connected to ki other nodes, and
lij = lji = 0 otherwise.

The matrix L, which will be our main concern, is positive semi-definite and symmetric. Recall c1 = 0 6 c2 6 � � � 6 cN,
repeated according to their multiplicities, are eigenvalues of the matrix L. In particular, cN, is the maximal eigenvalue
of L.

Since L is symmetric, the master stability function, in this case, has the form
_f ¼ ½Jf þ aH �f; ð18Þ
where a 2 R. Therefore, in this case the corresponding largest Lyapunov exponent or MSF, K(a), depends only on one
parameter, a. The master stability function determines the linear stability of the synchronized state; in particular, the
synchronized state is stable if all the eigenvalues of the matrix L (apart the zero one) are in the region K(a) < 0. We
denote by S � R the region where the MSF is negative and call it synchronization region. Discussions in the previous
sections show in fact that for the system (17), the synchronization region S may have one of the following forms:

• S1 = ;.
• S2 = (am,+1).
• S3 ¼

S
jðaðjÞm ; a

ðjÞ
M Þ:

Examples of the these scenarios are given in [29,30]. In the majority of cases am, aðjÞm , and aðjÞM turn out be positive and,
furthermore, in the case S3 there is only one parameter interval aðjÞm ; a

ðjÞ
M

� �
on which K(a) < 0. For this reason, we will

limit ourself to consider only such cases, focusing, in the remaining of this paper, on the scenarios S2 = (am,+1) and
S3 = (am,aM). It is easy to see that for S2 the condition of stable synchronous state is rc2 > am. For S3, one can easily
show that there is a value of the coupling strength r for which the synchronization state is linearly stable, if and only if
cN/c2 < aM/am. Therefore, for a large class of (chaotic) oscillators there exist two classes of networks:

1. Class-A networks: networks whose synchronization region is of type S2, for which the condition of stable synchro-
nous state is rc2 > a;

2. Class-B networks: networks whose synchronization region is of type S3, for which this condition reads cN/c2 < b;
1
les of class-A and class-B networks

Network Class Type Synchronization region

h22 h33 Case 1 Case 2

0 0 Class-A a > 5.14 a > 5.83
1 0 Class-A a > 0.00 a > 0.86
0 1 Class-B 1.52 < a < 2.48 1.81 < a < 2.50
1 0 Class-A a > 0.00 a > 0.90
0 1 Class-A a > 0.00 a > 0.15
1 1 Class-A a > 0.00 a > 1.13
1 1 Class-A a > 0.00 a > 0.13

hua’s circuit is used as an oscillator in two different cases: Case 1, for which the circuit has an attracting limit cycle, and Case 2,
ich the circuit shows a chaotic attractor. For each case, all 7 different types of coupling matrix have been investigated (note that
for i 5 j).
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where a = am and b = aM/am are constants that depend on f , the synchronous state x1 = x2 = � � � = xN and the matrix
H, but not on the Laplacian matrix L. For typical oscillators b > 1.

An example, showing class-A networks and class-B networks, is given in Table 1. In this table, the Chua’s circuit is
used as an oscillator (see [31]) and all different forms of the connectivity matrix H are considered. The values of param-
eters for the Case 1 are a = 8.0, b = 100/7, m0 = �8/7, and m1 = �5/7, while the parameters for the Case 2 are same as
for the Case 1, except for a = 8.5. Note that for the Case 2, a takes values in the range [0.13,5.83], while b = 1.38. Other
examples include networks of Lorenz oscillators (class-A network), for which a = 0.908, and networks of Rossler oscil-
lators (class-B network), for which b = 37.85.
3. Synchronization in random graphs

3.1. Preliminaries

A graph is an ordered pair of disjoint sets (V,E) such that E is a subset of the set of unordered pairs of V. The set V is
the set of vertices and E is the set of edges. If G is a graph then V = V(G) is the vertex set of G and E = E(G) is the edge
set. The edge {vi,vj} is said to join the vertices vi and vj and is denoted by vivj. Thus vivj and vjvi means exactly the same
edge; the vertices vi and vj are the endvertices of this edge. If vivj 2 E(G) then vi and vj are adjacent or neighboring vertices
of G and the vertices vi and vj are incident with edge vivj.

The order of G is the number of vertices; it is denoted by jGj, where j Æ j denotes the number of elements (cardinality)
of a set. The size is the number of edges; it is denoted by e(G). We write GN for an arbitrary graph of order N. Similarly
G(N,m) denotes an arbitrary graph of order N and size m.

The set of vertices adjacent to a vertex vi 2 G is denoted by C(vi). The degree of vi is d(vi) = jC(vi)j. The minimum

degree of the vertices of a graph G is denoted by d(G) and the maximum degree by D(G). If d(G) = D(G) = k, that is
every vertex of G has degree k then G is said to be k-regular graph. If V(G) = {v1,v2, . . . ,vN}, then d(G) =
d(v1) 6 d(v2) 6 � � � 6 d(vN) = D(G) is a degree sequence of G. The average degree or simply degree of a graph is
dðGÞ ¼

P
idðviÞ=N ¼ 2eðGÞ=jGj. The degree distribution pd(k) denotes the fraction of vertices that have degree equal

to k.
The size of a graph of order N is at least 0 and most N(N � 1)/2. Clearly for every m, 0 6 m 6 N(N � 1)/2, there is a

graph G(N,m). A graph of order N and size N(N � 1)/2 is called a complete n-graph and is denoted by KN. A path is a
graph P of the form
ðV ðPÞ;EðP ÞÞ : V ðP Þ ¼ fv0; v1; . . . ; vlg; EðPÞ ¼ fv0v1; v1v2; . . . ; vl�1vlg:
This path is usually denoted by v0v1 . . .vl. The vertices v0 and vl are endvertices of P and l = e(P) is the length of P. We
say that P is a path from v0 to vl or an v0 � vl path.

A walk W in G is an altering sequence of vertices and edges, say v0,a1,v1,a2, . . . ,al,vl, where ai = vi�1vi, 1 6 i 6 l. For
simplicity we write W = v0v1 . . .vl. Note that a path is a walk with distinct vertices. If a walk W = v0v1 . . .vl is such that
l P 3, v0 = vl, and the vertices vi, 0 < i < l, are distinct from each other and v0 then W is said to be a cycle. The symbol Pl

denotes an arbitrary path of length l and Cl denotes a cycle of length l.
Given vertices vi,vj, their distance d(vi,vj) is the minimum length of an vi � vj path. If there is no vi � vj path then

d(vi,vj) =1. A graph is connected if for every pair {vi,vj} of distinct vertices there is a path from vi to vj. The diameter

of the graph G is diamðGÞ ¼ maxvi ;vj dðvi; vjÞ. The radius of the graph G is radðGÞ ¼ minvi maxvj dðvi; vjÞ.
There are several ways to associate a matrix to a graph. The usual adjacency matrix A associated with a graph has

eigenvalues quite sensitive to the maximum degree (which is a local property). The combinatorial Laplacian L = D � A
with D denoting the diagonal degree matrix is a major tool for enumerating spanning trees and has numerous appli-
cations [32]. Another matrix associated with a graph is the (normalized) Laplacian ~L ¼ I �D�1=2AD�1=2 which controls
the expansion/isoperimetrical properties (which are global) and essentially determines the mixing rate of a random walk
on the graph [33]. The traditional random matrices and random graphs are regular or almost regular so the spectra of
all the above three matrices are basically the same (with possibly a scaling factor or a linear shift). However, for graphs
with power law distribution, the above three matrices can have very different distributions [34].

Recall c1 = 0 6 c2 6 � � � 6 cN, repeated according to their multiplicities, are eigenvalues of the matrix L. These eigen-
values are called Laplace eigenvalues of the graph G. Laplace eigenvalues of the complete graph KN are c1(KN) = 0 and
ck(KN) = N for 2 6 k 6 N. The Laplace eigenvalues of the N-cycle CN are the numbers
ckðCN Þ ¼ 2� 2 cos
2ðk � 1Þp

N

� �
; k ¼ 1; . . . ;N :
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It is easy to see that 0 is always an eigenvalue of L, and than (1,1, . . . , 1)T is the corresponding eigenvector. More pre-
cisely, we have the following description of the multiplicity of 0 as an eigenvalue of L.

Theorem 2. The multiplicity of 0 as an eigenvalue of L is equal to the number of connected components of G.

This implies if c2 > 0 then the graph is connected.

Theorem 3. The following inequalities hold:
c2ðGÞ 6
N

N � 1
dðGÞ 6 N

N � 1
DðGÞ 6 cN ðGÞ 6 2DðGÞ: ð19Þ
The proof of the above two theorems can be found, for example, in [36,37].
3.2. Synchronization in classical random networks

We turn now to random graphs. The primary model for the classical random graphs is the Erdös–Rényi model Gq

[35], in which each edge is independently chosen with the probability q for some given q > 0. Let G(N,q) be a random
graph on N vertices.

For the model of a random graph we take a sequence of probability spaces (C(N,q))N, where q is a real number
between 0 and 1, and N is an integer. We shall assume that q is fixed. The probability space C(N,q) consists of all labeled
simple graphs on N vertices, and an edge between an arbitrary pair of vertices appears with probability q, i.e. C(N,q)
has 2M elements, where M = N(N � 1)/2, and each graph in C(N,q) with m edges has the probability equal to
qm(1 � q)M�m. By PN(X) we will denote the probability of an event X � C(N,q) in the probability space C(N,q).

Definition 4. Almost every graph has property q (or q happens asymptotically almost surely (a.a.s)), if
lim
N!1

P NfG 2 CðN ; qÞ and the graph G has the property qg ¼ 1:
Theorem 5. Let G(N,q) be a random graph on N vertices. Then, the class-A network G(N,q) asymptotically almost surely

synchronizes for arbitrary small coupling r and the class-B network G(N,q) asymptotically almost surely synchronizes

for b > 1.

Proof. The proof of the theorem follows from the following result [38]. Let q be a fixed real number between 0 and 1.
For almost every graph and every e > 0
qN �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ eÞpqN log N

p
< c2ðGÞ < qN �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� eÞpqN log N

p
ð20Þ
and
qN þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� eÞpqN log N

p
< cN ðGÞ < qN þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ eÞpqN log N

p
: ð21Þ
Therefore, for large N, c2 � N, while cN/c2 approaches 1. Now, for class-A networks the condition for synchronization
reads r > a/N and r can be chosen arbitrary small. For class-B networks with b > 1, since cN/c2 approaches 1, when
N!1, it follows that the network almost surely synchronizes. h
3.3. Synchronization in power-law networks

There are several approaches for studying power-law graphs. In the first approach, one constructs power-law graphs
with prescribed degree sequence. Bender and Canfield [39] introduced a model, called configuration model, to construct
a random graph with a prescribed degree sequence. This model was refined by Bollobás [37]. Recently, Molloy and
Reed [40,41] used the configuration model to show that if some conditions are satisfied, then the graph almost surely
has a giant component. The advantage of the configuration model is to generate graphs exactly with the prescribed
degrees. However, there are several disadvantages of the configuration model. The analysis of the configuration model
is much more complicated due to the dependency of the edges. A random graph from the configuration model is in fact
a multi-graph instead of a simple graph. The probability of having multiple edges increases rapidly when the degrees
increase.

Another line of approach is evolution models, in which one generates a vertex/edge at a time, starting from a node or
a small graph. We briefly mention several such evolution models. Barabási and Albert [7] describe the following graph
evolution process. Starting with a small initial graph, at each time step they add a new node and an edge between the
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new node and each of m random nodes in the existing graph, where m is a parameter of the model. The random nodes
are not chosen uniformly. Instead, the probability of picking a node is weighted according to its existing degree (the
edges are assumed to be undirected). Using heuristic analysis with the assumption that the discrete degree distribution
is differentiable, they derive a power law for the degree distribution with a power of 3, regardless of m. A power law with
power 3 for the degree distribution of this model was independently derived and proved by Bollobás et al. [42]. Kumar
et al. [43] proposed three evolution models: linear growth copying, exponential growth copying, and linear growth vari-

ants. Aiello et al. described a general random graph evolution process in [44] for generating directed power law graphs
with given expected in-degrees and out-degrees. Recently, Cooper and Frieze [45] independently analyzed the above
evolution of adding either new vertices or new edges and derived power law degree distribution for vertices of small
degrees.

In this section we consider a random model introduced recently by Chung and Lu [46], which produces graphs with a
given expected degree sequence. Therefore, this model does not produce the graph with exact given degree sequence.
Instead, it yields a random graph with given expected degree sequence.

We consider the following class of random graphs with a given expected degree sequence:
w ¼ ðw1;w2; . . . ;wN Þ:
The vertex vi is assigned a vertex weight wi. The edges are chosen independently and randomly according to the vertex
weights as follows. The probability pij that there is an edge between vi and vj is proportional to the product wiwj where i

and j are not required to be distinct. There are possible loops at vi with probability proportional to w2
i , i.e.,
pij ¼
wiwjP

kwk
ð22Þ
and we assume maxiw2
i <

P
kwk . This assumption ensures that pij 6 1 for all i and j. We denote a random graph with a

given expected degree sequence w by G(w). For example, a typical random graph G(N,q) (see the previous section) on N

vertices and edge density q is just a random graph with expected degree sequence (qN,qN, . . . ,qN). The random graph
G(w) is different from the random graphs with an exact degree sequence such as the configuration model. We will use di

to denote the actual degree of vi in a random graph G in G(w), where the weight wi denotes the expected degree. The
following proposition is proved in [46].

Proposition 6. With probability 1 � 2/N, all vertices vi satisfy
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi log N

p
6 di � wi 6

2

3
log N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
log N

� �2

þ 4wi log N

s
: ð23Þ
Now we give some definitions. The expected average degree d of a random graph G in G(w) is defined to be
d ¼ 1

N

X
wi: ð24Þ
For a subset S of vertices, the volume of S, denoted by Vol(S), is the sum of expected degrees in S
VolðSÞ ¼
X
vi2S

wi:
In particular, the volume Vol(G) of G(w) is just VolðGÞ ¼
P

iwi ¼ Nd.
If a graph strictly follows the power law, then the average degree as well as its connectivity will be completely deter-

mined by the exponent of the power law (see [47]). However, for most realistic graphs, the power law holds only for a
certain range of degrees, namely, for the degrees which are not too small and not too large. We will consider the fol-
lowing model [47] with the consideration that most examples of massive graphs satisfying power law have exponent
b > 2.

In this paper we consider the model M(N,b,d,m), where N is the number of vertices, b > 2 is the power of the power
law, d is the expected average degree, and m is the expected maximum degree, such that m2 = o(Nd) [47]. We assume
that the ith vertex vi has expected degree
wi ¼ cðiþ i0 � 1Þ�
1

b�1
for 1 6 i 6 N. Here c depends on the average degree d and i0 depends on the maximum expected degree m. It is easy to
compute that the number of vertices of expected degree between k and k + 1 is of order c 0k�b, where c 0 = cb�1(b � 1), as
required by the power law. To determine c, we consider
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VolðGÞ ¼
X

i

wi � c
b� 1

b� 2
N 1� 1

b�1:
Since Nd � Vol(G), we have
c ¼ b� 2

b� 1
dN

1
b�1:
From
m ¼ ci
� 1

b�1

0 ;
it follows:
i0 ¼ N
d
m
ðb� 2Þ
ðb� 1Þ

	 
b�1

:

For the considered model d can be in any range greater than 1: it does not have to grow with N [52].

Theorem 7. Let M(N,b, d,m) be a random power-law graph on N vertices, for which d grows with N. Assume further that

d/m approaches 0 when N!1. Then the class-A network M(N,b, d,m) asymptotically almost surely synchronizes for

arbitrary small coupling r and class-B network M(N,b, d,m) asymptotically almost surely does not synchronize.

Proof. From Eq. (19),
N
N � 1

DðMÞ 6 cN ðMÞ 6 2DðMÞ; ð25Þ
it follows that for large N we have D < cN 6 2D, where D is the maximum degree of the graph. From (23) we have
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log N

p
6 D� m 6 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m log N þ A2

q
þ 2A:
where A = logN/3. Therefore, cN(M) � D for large N and cN(M) grows with N as m.

Let k be the expected minimum degree. Then
k � wN ¼ cðN þ i0 � 1Þ�
1

b�1 � cðN þ i0Þ�
1

b�1:
Thus, we have
k � b� 2

b� 1
d 1þ d

m
ðb� 2Þ
ðb� 1Þ

� �b�1
" #� 1

b�1

: ð26Þ
Eq. (26) can be rewritten as
k � d 1þ d
m

� �b�1
" #� 1

b�1

:

Since d/m! 0, when N!1, we have k � d. Therefore, when d grows with N, the minimum expected degree k also
grows with N.

It is proved in [48] that the function c2(G) is non-decreasing for graphs with the same set of vertices, i.e.
c2(G1) 6 c2(G2) if G1 � G2 and G1,G2 have the same set of vertices. Let G2 be our M(N,b,d,m) random graph and d be
the minimum degree of the graph M(N,b,d,m). Further, let G1 be a d-regular random graph which has the same set of
vertices as G2. Then obviously G1 � G2, and therefore, c2(M) P c2(G1). According to [50,49] (see also [13]), we have
d=2�
ffiffiffiffiffiffiffiffiffiffiffi
d ln 2
p

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðG1Þð2d� c2ðG1ÞÞ

p
:

Therefore,
c2ðMÞP c2ðG1ÞP d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
d2 � dðln 2�

ffiffiffiffiffiffiffiffiffiffiffi
d ln 2
p

Þ
r

: ð27Þ
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On the other hand, from Eqs. (19) and (23) it follows that for large N:
c2ðMÞ 6
N

N � 1
d � d: ð28Þ
Combining (27) and (28) we find that c2(M) can be approximated with d. Using (23) we find that c2(M) grows with
N as d.

If d grows with N, since c2 also grows with N we conclude that the class-A network M(N,b,d,m) almost surely
synchronize for arbitrary small coupling r. Since b is a finite number, from cN/c2 � m/k!1, we see that for
sufficiently large N, almost every class-B network M(N,b,d,m) does not synchronize. h

Remark 8. Assume that d grows with N as d = const Æ Nl and m = const Æ Nm. Then, clearly m P l > 0. Conditions of the
theorem are satisfied for l < m < (l + 1)/2. Indeed, from m2 = o(Nd), it follows that limN!1m2/(Nd) = 0. Therefore,
l + 1 > 2m. On the other hand, we have also assumed in the previous theorem that limN!1d/m = 0. Thus, we have
m > l. Therefore, l < m < (l + 1)/2. Clearly, in this case l < 1.

Remark 9. Let M(N,b,d,m) be a random power-law graph on N vertices, for which d grows with N. Let G(N,q) be a
classical (Erdös–Rényi) random graph on N vertices. For both graphs c2 grows with N, however, as follows from the
proof of this theorem, cER

2 for the classical model grows faster than cðpowÞ
2 for the power-law graph. Let rc be a critical

value of r for which class-A network synchronizes. Thus, the critical value rER
c ¼ a=cER

2 for a classical graph is always
smaller than the critical value rðpowÞ

c ¼ a=cðpowÞ
2 for a power-low graph, that is rER

c < rðpowÞ
c .

Theorem 7 says that when N!1 and d grows with N then class-A networks always synchronize with arbitrary
small coupling, while class-B networks do not synchronize. Now we consider the case d <1. Since, in this case, we
could not obtain analytical bounds for c2 and cN we provide numerical examples.

Consider the model M(N,b,d,m) with b = 3, d = 7, and m = 30. Figs. 1–3 show the c2, cN, and cN/c2 versus N. The
figures are obtained by simulating graphs composed of 200–1200 nodes, with a step of 10 nodes. For each case, 10 dif-
ferent simulations are computed and the mean value is presented as a dot (solid line is a curve fitting the dots). Note that
the actual maximum degree D may differ from the expected maximum degree m. Consider now a class-A network with
a = 1 and a class-B network with b = 40. From Fig. 1 one can compute the value of c2 for N = 1200, c2 = 0.31, and
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Fig. 1. c2 versus N for the model M(N,b,d,m) with b = 3, d = 7, and m = 30.
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Fig. 2. cN versus N for the model M(N,b,d,m) with b = 3, d = 7, and m = 30.
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Fig. 3. cN/c2 versus N for the model M(N,b,d,m) with b = 3, d = 7, and m = 30.

572 P. Checco et al. / Chaos, Solitons and Fractals 35 (2008) 562–577
therefore, the network synchronizes for r > 3.23. Moreover, from Fig. 3 one can compute the value of cN/c2 for
N = 1200, which is approximately cN/c2 = 107. Consequently, since b < 107, the class-B network does not synchronizes.

Let us write rc = a/c2 and bc = cN/c2. rc and bc are critical values for which the network may synchronize, in other
words, if r > rc (b > bc), then the class-A (class-B) network synchronizes. The proof of Theorem 7 suggests that the
critical values may be approximated as rc � a/k and bc = m/k provided that k and d are close to each other. For exam-
ple, consider a network composed by N = 1200 nodes with d = 20, m = 200, and b = 3, for which k ’ 9.99. Then we
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have (with a = 1 and b = 40) rc ’ 0.10 and bc ’ 20.02. Simulating such a network, the following actual
eigenvalues have been obtained: cðactÞ

2 ’ 7:61, cðactÞ
N ’ 196:43, and (cN/c2)(act) ’ 25.83. It follows that the actual critical

values are rðactÞ
c ’ 0:13 and bðactÞ

c ’ 25:83. In this case, since b = 40, both class-A and class-B networks
synchronize.
4. Synchronization in hybrid networks

It has been observed that many realistic networks possess the so-called small-world phenomenon, with two distin-
guishing properties: small distance between any pair of nodes, and the clustering effect that two nodes are more likely to
be adjacent if they share a neighbor. In this section, we consider a hybrid graph model proposed by Chung and Lu [51],
which has both aspects of the small-world phenomenon. Roughly speaking, a hybrid graph is a union of a global graph
(consisting of ‘‘long edges’’ providing small distances) and a local graph (consisting of ‘‘short edges’’ respecting local
connections).

Examples of local graphs include paths and cycles. More generally, we define a local graph as follows: consider a
lattice graph where the vertices are in a d-dimensional lattice where each vertex is a d-dimensional vector in the hyper-
cube [0, r]d with integer entries. Suppose each vertex is connected to its nearest neighbors. This graph, also known as
the grid graph, has diameter D, which is a function of the number of vertices N, and has maximum vertex degree
D = 2d.

Theorem 10. When N!1 local graphs for both class-A and class-B oscillators do not synchronize.

Proof. It is know that, see for example [13],
c2 <
2d lnðN � 1Þ

2ðD� 2Þ � lnðN � 1Þ
if 2(D � 2) � ln(N � 1) > 0. Therefore, c2! 0 as N!1 for the grid graphs. This is also true when the vertices are
connected to neighbors in an arbitrary local neighborhood. On the other hand, 2d = D(G) 6 cN 6 2D(G) = 4d. There-
fore, cN/c2!1 as N!1. h

A hybrid graph consists of two parts: a global graph and a local graph. The edge set of the hybrid graph is a disjoint
union of the edge set of the global graph G and that of the local graph L. We consider two cases: classical random graph
model G(N,q), described in Section 3.2, and power-law random graph model M(N,b,d,m), described in Section 3.3. For
local graph L we consider the grid graph, although other choices are also possible. For example, Chung and Lu use two
parameters to describe the local connectivity. For any fixed two integers k P 2 and l P 2, a graph L is called locally

(k, l)-connected if for any edge vivj, there are at least l edge-disjoint paths with length at most k joining from vi to vj

(including the edge vivj). For any two points vi and vj, the probability of choosing an edge between vi and vj is denoted
by p(vi,vj), defined as follows:

• p(vi,vj) = 1 if vivj is an edge of L;
• p(vi,vj) = q for a classical random graph;
• p(vi,vj) = qwiwj for a power-law graph.

Let now consider a hybrid network for which equation of the motion can be written as
_x ¼ FðxÞ þ r½ðLL þ LGÞ �H �x; ð29Þ
where LL is the matrix describing the local graph L, and LG is the coupling matrix of the global graph G. Let
Ntotal = N(N � 1)/2 be the total number of edges (links) in a network with N nodes and NL be the total number of local
edges. Then NG = Ntotal � NL is the number of all possible global edges. Let pNG, where 0 6 p 6 1, be a number of
global edges.

Theorem 11. Assume N is large enough and let G be a global graph (classical random graph model or power-law model).

Then for class-A networks, given a, there exist a number p, such that rc(p)	 rc(0), where rc(0) = a/c2(0), rc(p) = a/c2(p),

c2(p) is the second eigenvalue of the matrix LL + LG, and c2(0) is the second eigenvalue of the matrix LL. For class-B

networks, given b > 1, there exist a number p, such that cN(p)/c2(p) < b, where c2(p) and cN(p) are the second and the Nth

eigenvalue, respectively, of the matrix LL + LG.
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Proof. Since for p = 1, the matrix LL + LG is fully connected, it follows that ci(1) = N, i P 2; hence c2(1) = N and
cN(1)/c2(1) = 1. On the other hand, on average, the c2(p) is monotonically increasing function of p and cN(p)/c2(p) is
monotonically decreasing function of p. Thus, for both classes of networks (class-A and class-B), there exists a critical
value of p, pc, such that for p > pc, almost all networks (29) are synchronizable. h
Fig. 4. c2 versus p for the hybrid model with N = 1200, in which the local graph is a circle and the global graph is a classical random
graph model.

Fig. 5. cN/c2 versus p for the hybrid model with N = 1200, in which the local graph is a circle and the global graph is a classical random
graph model.



P. Checco et al. / Chaos, Solitons and Fractals 35 (2008) 562–577 575
We now present an example. Let the local graph L be a circle and N = 1200. It is easy to compute that
c2(0) = 8.3513 · 10�9 and cN(0)/c2(0) = 1436156.321.
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Fig. 6. c2 versus p for the hybrid model with N = 1200 and m = 5, in which the local graph is a circle and the global graph is a power-
law graph model.
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Fig. 7. cN/c2 versus p for the hybrid model with N = 1200 and m = 5, in which the local graph is a circle and the global graph is a
power-law graph model.



576 P. Checco et al. / Chaos, Solitons and Fractals 35 (2008) 562–577
Assume that the global graph is a classical random graph model. Consider first class-A oscillators for which
a = 1 and r 6 10. Since rc2	 1, the local network L of 1200 oscillators does not synchronize. The dependence
of c2(p) on p is shown in Fig. 4. Since rc2 > a, it follows that the hybrid graph L + G synchronizes if c2(p) >
a/r = 0.1. From Fig. 4 one easily finds that c2(p) > 0.1 already for p = 33.30 · 10�4. We consider now a network
of class-B oscillators for which b = 40. Since cN/c2
 40, the local network L does not synchronize. The dependence
of cN(p)/c2(p) on p is shown in Fig. 5. Since the condition for synchronization is cN/c2 < b, it follows that the hybrid
graph L + G synchronizes for p = 15.78 · 10�4. Therefore, adding only a small number of global edges makes the
oscillators synchronize.

Assume now that the global graph is a power-law graph model. Numerically we consider the model generated in the
following way. First, we choose m nodes at random from all N nodes with equal probabilities and assign them to be
centers. Second, we add links (global edges) by connecting one node chosen at random from all N nodes to another
node randomly chosen from the m centers. Third, when all centers are fully connected with other nodes, we start uni-
formly to add links between the rest of the nodes. The dependence of c2(p) and cN(p)/c2(p) on p for such model is shown
in Figs. 6 and 7, respectively for m = 5. From these figures and our numerical experiments, we may conclude: (i) cN(p)
increases reaching the maximum values N for smaller value of m; thus, cN reaches the value N in the fastest way for
m = 1, and (ii) c2 is not effected by m. Therefore, the random model with m centers only influences synchronization
property of class-B networks: if one adds global edges using the model with centers, the network becomes more difficult
to synchronize. Thus, for example, class-B network with b = 40 will synchronize for p = 26.70 · 10�3 > 15.78 · 10�4.
Saying in another way, if the global edges are added independently, then the synchronization is optimal.
5. Conclusion

In this paper we studied synchronization in networks with different topologies. We can summarize the main conclu-
sions of this paper as follows:

• Let G(N,q) be a classic random graph (Erdös–Rényi model) on N vertices. We proved that for sufficiently large N,
the class-A network G(N,q) almost surely synchronize for arbitrary small coupling r. For sufficiently large N, almost
every class-B network G(N,q) with b > 1 synchronizes.

• Let M(N,b,d,m) be a random power-law graph on N vertices. We proved that for sufficiently large N, the class-A
network M(N,b,d,m) almost surely synchronize for arbitrary small coupling r. For sufficiently large N, almost every
class-B network M(N,b,d,m) does not synchronize.

• Let M(N,b,d,m) be a random power-law graph on N vertices, for which d grows with N. Let G(N,q) be a classical
(Erdös–Rényi) random graph on N vertices. Let rER

c and rðpowÞ
c be critical values of r for which class-A classical ran-

dom network synchronizes and class-A power-law random network synchronizes, respectively. Then rER
c < rðpowÞ

c .
• Adding small number of global edges to a local graph makes the corresponding hybrid graph to synchronize.
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