Qualitative behaviour of nonlinear systems

(from Strogatz, Nonlinear dynamics and chaos, Perseus Books, Cambridge, Ma, 1994, Ch. 6)

Let us consider a simple second-order autonomous nonlinear system

dx
— =f(x
=~ () 0
Equation (1) is equivalent to
% = fl(xu%)
0 2)
E = fz(xlv%)

First, we will classify the kinds of fixed points that can arise, using our knowledge of
linear systems, then we will try to determine the qualitative behaviour of the solutions, by
finding the qualitative system phase portrait directly from the properties of f(x).

Linearization around a fixed point
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The exact nonlinear state equation (4.2) and the linearized state equation
(5.24) about the equilibrium point x,, are written in vector form as follows for

comparison purposes:

i=f(x) or x =.f(xg + &) (5.25).
%= A% (5.26)
where
*h 9
al dx, dx,
AS|or o, (5.27)
:;:_I. dx =g

is Eailf.d the jacobian matrix of f(x) evaluated at the equilibrium state
o= (X194 X20)-

It is reasonable to expect that the trajectories in a small neighborhood of @
of Eq. (5.23) are “close” to those in a small neighborhood of the origin
(£, =0, x, =0) of Eq. (5.24). This “closeness™ property is made precise in the
following theorem whose proof can be found in Hartman.



Phase portrait linearization property

Assumption: f(x,, x,) and f,(x,, x,) have continuous first-order
partial derivatives in a neighborhood of the equilibrium state

{xm: xzf_a}r

Conclusions: If the origin of the linearized state equation is a
stable (respectively, unstable) node, a stable (respectively, un-
stable) focus, or a saddle point, then the trajectories in a small
neighborhood of (x,,, x,,) of the associated nonlinear state
equation will also behave “like” a stable (respectively, unstable)
node, stable (respectively, unstable) focus, or a saddle point.”'

Moreover, in the case of a stable (respectively, unstable) node
or a saddle point, the slow and fast eigenvectors of A in Eq.
(5.27) determine the limiting slope of the trajectories near x
for the nonlinear state equation in the same way depicted in Figs.
3.3 to 3.5.

* P. Hartman, Ordinary Differential Equation, Wiley, Mew York, 1964, {The generalization of
the phase portrait linearization property 1o higher dimensions is usually referred 1o as Hartman's
thearem. )

" Roughly speaking, this property asseris that if the trajectories of the nonlinear state equation
|Eq. (4.2)] were drawn om a rubber sheet, then those trajectories restricted o a sufficiently small
neighborhood of x, could be made to coincide with those of the linearized stale equation |Eq,
(5.24)] by stretching the rubber sheet in an appropriate way.

The Effect of Small Nonlinear Terms

Is it really safe to neglect the guadratic terms in (1)? In other words, does the
linearized system give a qualitatively correct picture of the phase portrait near
(x*,¥*) 7 The answer is ves, as long as the fixed point for the linearized system
is not one of the borderline cases discussed in Section 5.2, In other words, if
the linearized system predicts a saddle, node, or a spiral, then the fixed point
really is a saddle, node, or spiral for the original nonlinear system. See An-
dronov et al. (1973) for a proof of this result, and Example 6.3.1 for a concrete
illustration.

The borderline cases (centers, degenerate nodes, stars, or non-isolated fixed
points) are much more delicate. They can be altered by small nonlinear terms, as
we'll see in Example 6.3.2 and in Exercise 6.3.11.



EXAMPLE 6.3.2:
Consider the system

x==y+ax(x’ +y’)

v=ax+ay(x’ +y)
where a is a parameter. Show that the linearized system incorrectly predicts that
the origin is a center for all values of a, whereas in fact the origin is a stable spiral
if @ <0 and an unstable spiral it a > 0.

Solution: To obtain the linearization about (x*, y*) =(0,0), we can either com-
pute the Jacobian matrix directly from the definition, or we can take the following
shortcut. For any system with a fixed point at the origin, x and y represent devia-
tions from the fixed point, since u = x—x*=x and v=y- y* = y; hence we can
linearize by simply omitting nonlinear terms in x and y. Thus the linearized sys-
tem is x = —y, v = x. The Jacobian is

A 0 -l
1o
which has =0, A=1>0, so the origin is always a center, according to the lin-

carization.

To analyze the nonlinear system, we change variables to polar coordinates. Let
x =rcos@, y= rsinf. To derive a differential equation for r, we note x° + y* = »’,

s0 xt + vv=rr. Substituting for x and y yields

ri=.x{-y+ax{.xz + yi})+}{x+ay{x= +_1.:1])
= a(x? + y')?
=ar',

Hence F=ar’. In Exercise 6.3.12, you are asked to derive the following differen-
tial equation for @:
P _ yx
r
After substituting for & and ¥ we find 8 = 1. Thus in polar coordinates the original
system becomes

. 3
r=ar

6=1.



The system is easy to analyze in this form, because the radial and angular mo-
tions are independent. All trajectories rotate about the origin with constant angular
velocity @=1.

The radial motion depends on a, as shown in Figure 6.3.2,

Figure 6.3.2
If a <0, then r(t) — 0 monotonically as t — == . In this case, the origin is a sta-

ble spiral. (However, note that the decay is extremely slow, as suggested by the
computer-generated trajectonies shown in Figure 6.3.2.) If a=0, then r(f)=r,
for all ¢ and the origin is a center. Finally, if a > 0, then r{r) — = monotonically
and the origin is an unstable spiral.

We can see now why centers are so delicate: all trajectories are required to close
perfectly after one cycle. The slightest miss converts the center into a spiral. m

Similarly, stars and degenerate nodes can be altered by small nonlinearities, but
unlike centers, their stability doesn’t change. For example, a stable star may be
changed into a stable spiral (Exercise 6.3.11) but not into an unstable spiral. This is
plausible, given the classification of linear systems in Figure 5.2.8: stars and de-
generate nodes live squarely in the stable or unstable region, whereas centers live
on the razor’s edge between stability and instability.

If we're only interested in stability, and not in the detailed geomeiry of the tra-
Jectories, then we can classify fixed points more coarsely as follows:

Robust cases:

Repellers (also called sowrces): both eigenvalues have positive real
part.

Artractors (also called sinks): both eigenvalues have negative real part.

Saddles: one eigenvalue is positive and one is negative.

Marginal cases:

Centers: both eigenvalues are pure imaginary.

Higher-order and non-isolated fixed peints: at least one eigenvalue is
ZETO,

Thus, from the point of view of stability, the marginal cases are those where at
least one eigenvalue satisfies Re(A) = 0.



Some definitions

- Hyperbolic fixed points

If Re(A)# 0 for both eigenvalues, the fixed point is often called hyperbolic.
(This is an unfortunate name—it sounds like it should mean “saddle point™—but it
has become standard.) Hyperbolic fixed points are sturdy; their stability type is un-
affected by small nonlinear terms. Nonhyperbolic fixed points are the fragile ones.

We've already seen a simple instance of hyperbolicity in the context of vector
fields on the line. In Section 2.4 we saw that the stability of a fixed point was accu-
rately predicted by the linearization, as long as f'(x*)# 0. This condition 1s the
exact analog of Re(4)# (.

These ideas also generalize neatly to higher-order systems. A fixed point of an
nth-order system is hyperbolic if all the eigenvalues of the linearization lie off the
imaginary axis, i.e., Re(4)#0 for i=1, ..., a. The important Harrman—
Grobman theorem states that the local phase portrait near a hyperbolic fixed point
is “topologically equivalent™ to the phase portrait of the linearization; in particular,
the stability type of the fixed point is faithfully captured by the linearization. Here
topologically equivalent means that there is a homeomorphism (a continuous de-
formation with a continuous inverse) that maps one local phase portrait onto the
other, such that trajectories map onto trajectories and the sense of time (the direc-
tion of the arrows) is preserved.

Intuitively, two phase poriraits are topologically equivalent if one is a distorted
version of the other, Bending and warping are allowed, but not ripping, so closed or-
bits must remain closed, trajectories connecting saddle points must not be broken, etc.

- Structural stability
Hyperbolic fixed points also illustrate the important general notion of structural

stability. A phase portrait is structurally stable if its topology cannot be changed
by an arbitrarily small perturbation to the vector field. For instance, the phase por-
trait of a saddle point is structurally stable, but that of a center is not: an arbitrarily
small amount of damping converts the center to a spiral.

- Nullclines
Nullclines are the curves where either dx;/dt = 0 or dx,/dt = 0. They indicate where the flow is
purely horizontal or vertical. Their intersections are the fixed points of the system.

- Basin of attraction
Given an attracting fixed point X* , we define its basin of attraction to be the set of
initial conditions Xp such that X(t) —» x* ast — .

- Stable (unstable) manifold of a saddle

Given a saddle point x*, its stable manifold is defined as the set of initial conditions
Xo such that X(t) — x* as t — o. Likewise, the unstable manifold of X* is the set of
initial conditions X, such that X(t) —» x*ast— — 0.



Example: Lotka-Volterra model of competition

In the next few sections we'll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
A model (known as Lotka-Volterra model) is the following

x=x(3—-x-2v)
y=y2=x=y)

where

x(t)= population of rabbits,
y(r)= population of sheep

To find the fixed points for the system, we solve x =0 and ¥=0 simultane-
ously, Four fized points are obtained: (0,00, (0,2}, (3,0}, and (1,1). To classify
them, we compute the Jacobian:

ﬂ_[é}'— %]_[3—21—2}' 25

R 2_-”_2-""}

Now consider the four fixed points in turn:
30
0 2

"

{0,0): Then A :[

The eigenvalues are A =3, 2 so (0,0) is an unstable node. Trajectories leave
the origin parallel to the eigenvector for A = 2, i1.e. tangential to
v =(0,1), which spans the y-axis. (Recall the general rule: at a
% node, trajectories are tangential to the slow eigendirection,

¥

which is the eigendirection with the smallest |4| ) Thus, the

b—————  phase portrait near (0,0) looks like Figure 6.4.1.
X

=1 0
igure . 0,2): Th A= .
Figure 6.4.1 (0.2) en [_2 _1}

This matrix has eigenvalues 4 =—1,-2, as can be seen from inspection, since



the matrix is triangular. Hence the fixed point is a stable node. Trajectories ap-
proach along the cigendirection associated with A = —1 ; you can check that this di-

rection is spanned by v =(1,-2). Figure 6.4.2 shows the phase portrait near the
fixed point (0,2).

Figure 6.4.2

-6
(3,0): 'I‘hcnr’l=[ )and.l:-l—l,

0 -1

This is also a stable node. The trajectories approach along the slow eigendirec-
tion spanned by v =(3,-1), as shown in Figure 6.4.3,

¥

L=\

x

Figure 6.4.3

(I.L1): Then .q:[ ] which has T=-2, A=-1, and A=-1++2.

Hence this is a saddle poinr. As you can check, the phase portrait near (1,1) is as
shown in Figure 6.4.4.

P

Figure 6.4.4



Combining Figures 6.4.1-6.4 4, we get Figure 6.4.5, which already conveys a
good sense of the entire phase portrait. Furthermore, notice that the x and y axes
contain straight-line trajectories, since & =0 when x =0, and ¥y =0 when y=0.

Figure 6.4.5

Now we use commaon sense (o fill in the rest of the phase portrait (Figure 6.4.6).
For example, some of the trajectories starting near the origin must go to the stable
node on the x-axis, while others must go to the stable node on the y-axis. In be-
tween, there must be a special trajectory that can’t decide which way to turn, and
s0 it dives into the saddle point. This trajectory is part of the stable manifold of the
saddle, drawn with a heavy line in Figure 6.4.6.

Figure 6.4.6

The other branch of the stable manifold consists of a trajectory coming in “from in-
finity.” A computer-generated phase portrait (Figure 6.4.7) confirms our sketch.

The phase portrait has an inter-
esting biological interpretation. It
shows that one species generally
drives the other to extinction. Tra-
jectories starting below the stable
manifold lead o eventual extinc-
tion of the sheep, while those star-
ing above lead to eventual
extinction of the rabbits. This di-
chotomy occurs in other models of
competition and has led biologists
to formulate the principle of com-
petitive exclusion, which states that two species competing for the same limited re-
source typically cannot coexist. See Pianka (1981) for a biological discussion, and
Pielou (1969), Edelstein—Keshet (1988), or Murray (1989) for additional refer-
ences and analysis.

Figure 6.4.7



Our example also illustrates some general mathematical concepts. Given an at-
tracting fixed point x *, we define its basin of attraction 10 be the set of initial con-
ditions x;, such that x(r) — x ™ as 1 —» e . For instance, the basin of attraction for
the node at (3,0) consists of all the points lying below the stable manifold of the
saddle. This basin is shown as the shaded region in Figure 6.4 8.
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Because the stable manifold separates the basins for the two nodes, it is called the
basin boundary. For the same reason, the two trajectories that comprise the stable
manifold are traditionally called separatrices. Basins and their boundaries are im-
portant because they partition the phase space into regions of different long-term
behavior.



