
 
 

Qualitative behaviour of linear systems 
(from Strogatz, Nonlinear dynamics and chaos, Perseus Books, Cambridge, Ma, 1994, Ch. 5) 

 
 

Let us consider a simple second-order autonomous linear system 

 
d

dt
=
x
Ax  (1) 

Let us denote with λ1 and λ2 its eigenvalues and with v1 and v2 the corresponding 
eigenvectors. For the moment, let us suppose the eigenvalues to be real. 
 
Real eigenvalues 
 

 

 
 

 



 
 

 
Phase portrait for the case of negative distinct eigenvalues (λ2 < λ1 < 0): both solutions decay 
exponentially.  Note that if the initial value x(0) is on an eigenvector. then the trajectory is a 
straight line coincident with the eigenvector. The equilibrium point is a stable node. 

 
Stable node 

Trajectories typically approach the origin tangent to the  slow eigendirection, defined as the 
direction spanned by the eigenvector with the smaller |λ|. If the eigenvalues are distinct positive, 
then both solutions grow exponentially: we obtain a phase portrait similar to that of Fig. 5.2.3, with 
all the arrows reversed (the origin is  an unstable node). 

Phase portrait for the case of two real eigenvalues of opposite sign (λ1 > 0 ,  λ2 < 0): the first 
eigensolution grows exponentially, and the second eigensolution decays. This means that the 
origin is a saddle point and the stable and the unstable manifold are the lines corresponding to 
the decaying and growing eigensolution, respectively. 

 
Saddle point 

 
 
 
 
 



 
 
 
 

Complex eigenvalues 
 

In the case of a second order linear system with complex eigenvalues  a  jd   the 

solution can be written in the form: 
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with the constant A1, 1, A2, and 2 determined by the initial conditions  x(0) and (0)x . 
There are two cases to be considered. 



 

1) a = 0: imaginary eigenvalues 

If  a = 0, then all the solutions are periodic, with period T=2p/d. The trajectories are 

closed orbits around the fixed point  x = 0, with  their amplitude determined by the initial  
conditions x(0) and (0)x . So we have a continuous of closed orbits. The origin is called a 
center (Fig. 5.2.4a) 

 

2) a ≠ 0: complex eigenvalues 

If  a ≠ 0, then 1x  and 2x  are exponentially decaying oscillations if a < 0 and growing 

oscillations if a > 0. The trajectories are logarithmic spirals around the origin.  

If a < 0 they shrink to the origin as t → ∞  as shown in Fig. 5.2.4b. The equilibrium state 

x = 0 in this case is called a stable focus (or stable spiral).  

If a > 0 the trajectories are logarithmic spirals which expand toward infinity as t → ∞ . 

The equilibrium state x = 0 in this case is called an unstable focus (or unstable spiral).  
 

 
Figure 5.2.4 

 



 
 


