Qualitative behaviour of linear systems

(from Strogatz, Nonlinear dynamics and chaos, Perseus Books, Cambridge, Ma, 1994, Ch. 5)

Let us consider a simple second-order autonomous linear system

dx
o T AX (1)

Let us denote with A; and A, its eigenvalues and with v, and v, the corresponding
eigenvectors. For the moment, let us suppose the eigenvalues to be real.

Real eigenvalues

The typical situation is for the eigenvalues to be distinct: A, # A, . In this case, a
theorem of linear algebra states that the corresponding eigenvectors v, and v, are
linearly independent, and hence span the entire plane {Figure 5.2.1). In particular,
any initial condition X, can be written as a linear combination of eigenvectors, say
Xp =¥, H6v,.
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Figure 5.2.1
This observation allows us to write down the general solution for x(r) —it is simply
X(f) = ce™'v, +c,e''v, . (6)

Why is this the general solution? First of all, it is a linear combination of solu-
tions to X = Ax, and hence is itself a solution. Second, it satisfies the initial condi-
tion x(0)=x,, and so by the existence and uniqueness theorem, it is the only
solution. (See Section 6.2 for a general statement of the existence and uniqueness
theorem.)



Phase portrait for the case of negative distinct eigenvalues (A, < A; < 0): both solutions decay

exponentially. Note that if the initial value x(0) is on an eigenvector. then the trajectory is a
straight line coincident with the eigenvector. The equilibrium point is a stable node.
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Figure 5.2.3 Stable node

Trajectories typically approach the origin tangent to the slow eigendirection, defined as the
direction spanned by the eigenvector with the smaller |A]. If the eigenvalues are distinct positive,
then both solutions grow exponentially: we obtain a phase portrait similar to that of Fig. 5.2.3, with
all the arrows reversed (the origin is an unstable node).

Phase portrait for the case of two real eigenvalues of opposite sign (A; > 0, X, < 0): the first
eigensolution grows exponentially, and the second eigensolution decays. This means that the
origin is a saddle point and the stable and the unstable manifold are the lines corresponding to
the decaying and growing eigensolution, respectively.
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Complex eigenvalues

In the case of a second order linear system with complex eigenvalues « + jog the
solution can be written in the form:

z (t) = Ae" Cos(wdt + 4,01)
z,(t) = Ae™ cos(wdt + goz) @

with the constant A, ¢y, A,, and ¢, determined by the initial conditions x(0) and X(0).
There are two cases to be considered.

1) o =0: imaginary eigenvalues

If o =0, then all the solutions are periodic, with period T=2w/wq4. The trajectories are

closed orbits around the fixed point x = 0, with their amplitude determined by the initial
conditions x(0) and %(0) . So we have a continuous of closed orbits. The origin is called a
center (Fig. 5.2.4a)

2) a #0: complex eigenvalues
If a#0,then T} and Ty are exponentially decaying oscillations if o < 0 and growing
oscillations if o > 0. The trajectories are logarithmic spirals around the origin.

If a < 0 they shrink to the origin as t — oo as shown in Fig. 5.2.4b. The equilibrium state
x = 0 in this case is called a stable focus (or stable spiral).
If o > 0 the trajectories are logarithmic spirals which expand toward infinity as t — oo .

The equilibrium state x = 0 in this case is called an unstable focus (or unstable spiral).
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Figure 5.2.4



EXAMPLE 5.2.5:

In our analysis of the general case, we have been assuming that the eigenvalues
are distinct. What happens if the eigenvalues are equal?

Solution: Suppose A, = A, = A. There are two possibilities: either there are two
independent eigenvectors corresponding to A, or there's only one.

If there are two independent eigenvectors, then they span the plane and so
every vector is an eigenvector with this same eigenvalue A.To see this, write
an arbitrary vector X, as a linear combination of the two eigenvectors:
X, =V, +c,v,. Then

AX, = A(c, ¥, +¢,V,) = Ay, +¢,Av, = Ax,

SO X, is also an eigenvector with eigenvalue A. Since multiplication by A sim-
ply stretches every vector by a factor 4, the matrix must be a multiple of the

identity:
A= A0
RURY)

Then if A+ 0, all trajectories are straight lines through the origin (x(1) = e”x“}
and the fixed point is a|star node (Figure 5.2.5).

Figure 5.2.5



