## **Memristor – The Missing Circuit Element**



Figure 1 | The four fundamental two-terminal circuit elements: resistor, capacitor, inductor and memristor. Resistors and memristors are subsets of a more general class of dynamical devices, memristive systems. Note that R, C, L and M can be functions of the independent variable in their defining equations, yielding nonlinear elements. For example, a charge-controlled memristor is defined by a single-valued function M(q).

Basic definition of a memristor (Chua, 1971)



Fig. 2. The symbol used for a memristor and a generic (flux-controlled) characteristic

Note that the flux  $\varphi(t)$  associated with a two-terminal element at any time *t* is defined by

$$\varphi(t) = \int_{-\infty}^{t} v(\tau) d\tau$$

without any implication with magnetic field.

If the implicit equation above can be put in the explicit form

$$\varphi = f(q)$$

then we get the constitutive equation of a charge-controlled memristor. In this case we have

$$d\varphi = M(q)dq$$
, where  $M(q) = \frac{df}{dq}$ 

7 0

The voltage across a charge-controlled memristor is given by

$$\begin{cases} v(t) = \frac{d\varphi}{dt} = \frac{df}{dq}\frac{dq}{dt} = M(q(t))i(t) \\ \frac{dq}{dt} = i(t) \end{cases}$$

At any time  $t_0$ , M depends on  $q(t_0)$ , i.e. on the time integral of the memristor current

$$q(t_0) = \int_{-\infty}^{t_0} i(\tau) \, d\tau$$

and, hence, it depends on the complete past history of the memristor current. This observation justifies the choice of the name *memory resistor*, or *memristor*.

Finally, note that there is no point introducing a linear memristor in linear network theory. In fact, in this case we would have

$$\frac{df}{dq} = M = \text{const}$$

and, hence, the memristor would reduce to a linear resistor

$$v(t) = M i(t)$$

## General memristive one-port (Chua, Kang, 1976)

General expression for a current-controlled memristive one-port (Chua, Kang, 1976):

$$\begin{cases} v = R(w)i \\ \frac{dw}{dt} = f(w,t) \end{cases}$$

where w denotes the state of the system.

Note that the output v is zero whenever the input i is zero,

regardless of the state w, which incorporates the memory effect.

## Main properties:

- 1) Passivity criterion
- 2) No energy discharge property
- 3) DC characteristics
- 4) Double-valued Lissajous figure property:

A current-controlled memristive one-port under periodic operation with  $i(t) = I \cos(\omega t)$  always gives rise to a v-iLissajous figure whose voltage v is at most a double-valued function of i.

**Proof:** In the representation above, the state equation has a unique periodic solution x(t) for all  $t \ge t_0$  for some initial state  $x_0$ , by assumption. Hence, for any value of the current  $i \in [-I, I]$ , there correspond at most two distinct values of v.



Fig. 5. Illustration of property 4. (a) Possible Lissajous figure. (b) Impossible Lissajous figure.

*Remark:* This property is illustrated in Fig. 5. Observe that the Lissajous figure in Fig. 5(b) cannot correspond to that of a current-controlled memristive one-port, because at  $i = i_P$ , there correspond more than two distinct values of v.



Authorized licensed use limited to: Politecnico di Torino. Downloaded on December 4, 2008 at 13:04 from IEEE Xplore. Restrictions apply.

## The model



The application of an external bias v(t) across the device will move the boundary between the two regions by causing the charged dopants to drift<sup>26</sup>. For the simplest case of ohmic electronic conduction and linear ionic drift in a uniform field with average ion mobility

 $\mu_{\rm V}$ , we obtain

$$v(t) = \left(\mathcal{R}_{\rm ON} \frac{w(t)}{D} + \mathcal{R}_{\rm OFF} \left(1 - \frac{w(t)}{D}\right)\right) i(t) \tag{5}$$

$$\frac{\mathrm{d}w(t)}{\mathrm{d}t} = \mu_{\mathrm{V}} \frac{\mathcal{R}_{\mathrm{ON}}}{D} i(t) \tag{6}$$

which yields the following formula for w(t):

$$w(t) = \mu_{\rm V} \frac{\mathcal{R}_{\rm ON}}{D} q(t) \tag{7}$$

By inserting equation (7) into equation (5) we obtain the memristance of this system, which for  $\mathcal{R}_{ON} \ll \mathcal{R}_{OFF}$  simplifies to:

$$\boldsymbol{R}(\boldsymbol{q}) \equiv M(\boldsymbol{q}) = \mathcal{R}_{\text{OFF}} \left( 1 - \frac{\mu_{\text{V}} \mathcal{R}_{\text{ON}}}{D^2} \boldsymbol{q}(t) \right) \quad (*)$$

The *q*-dependent term in parentheses on the right-hand side of this equation is the crucial contribution to the memristance, and it becomes larger in absolute value for higher dopant mobilities  $\mu_V$  and smaller semiconductor film thicknesses *D*. For any material, this term is 1,000,000 times larger in absolute value at the nanometre scale than it is at the micrometre scale, because of the factor of  $1/D^2$ , and the memristance is correspondingly more significant. Thus, memristance becomes more important for understanding the electronic characteristics of any device as the critical dimensions shrink to the nanometre scale.

$$(*) v(t) = \left[ R_{ON} \mu_v \frac{R_{ON}}{D^2} q + R_{OFF} \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}^2}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}^2}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2} q \right) \right] i(t) = R_{OFF} \left[ \mu_v \frac{R_{ON}}{R_{OFF}} \frac{1}{D^2} q + \left( 1 - \mu_v \frac{R_{ON}}{D^2}$$

If  $R_{_{ON}} \ll R_{_{OFF}}$  the term  $R_{_{ON}}^2 / R_{_{OFF}}$  can be disregarded and hence:

$$\begin{cases} v(t) = R(q)i(t) & \text{ with } R(q) \equiv M(q) = R_{\scriptscriptstyle OFF} \left[ 1 - \mu_v \frac{R_{\scriptscriptstyle ON}}{D^2} q \right] \\ \frac{dq}{dt} = i \end{cases}$$