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Abmct-A broad generalization of memristors-a recently  postulated 
circuit element-to m intetesting class of nonlinear dynamical systems 
cdled menuisrive system is introduced. These systems are unconven- 
tid in the sense that  while  they  behave  like  resistive devices, they can 
be endowed with a rather exotic vaxiety of dynamic  characteristics. 
While possessing memory  and exhibiting Smrlldgnal inductive OL capac- 
itive effects, they are incapable of enagy dischnrge md they  introduce 
no phaae shift between the  input  and  output wavdoms. This zero- 

through the origin. Memdstirre systems are hysteretic in the sense that 
their LisgjoUs figures vmy  with  the  excitation  fxequency. At  very low 
frequencies, memristive systems are indistinguishable from nonlinear 
resiston wfiile  at  extremely high fxequencies, they  reduce to lineur re- 
sistoff These tnomrtops properties have misled md prevented  the 
identificrtion of many memdstirre  devices md systems-including  the 
tfiermistor, the  Hodgkin-Huxley membrane circuit  model, and  the dis- 

Generic properties of memristive systems are derived and a cunonic 
dytmmid system model is presented  along  with an explicit algorithm 
for identifying  the  model parameters  and functions. 

~ g p ~ ~ @ V S ~ ~ 8 b ~ f i g r u e w f i i c h d w P ~ S P u r s e S  

charge tubes. 

I.  INTRODUCTION 
HE  MEMRISTOR has been postulated recently as the 
fourth basic circuit element [ 11. This element behaves 
Like a linear resistor with memory but exhibits many in- 

teresting nonlinear characteristics. These unconventional 
properties have led to the successful modeling of a number of 
physical devices and systems [ 11  -141. Notwithstanding these 
applications, however, there remains an even broader class of 
physical devices  and systems whose characteristics resemble 
those of the memristor  and  yet  cannot be realistically  modeled 
by this element, the reason being that  the memristor is only 
a special  case of a much more general class of dynamical 
systems-henceforth called memristive systems-defined by' 

1 x =!(x, u ,  t) 

Y = g(x, 11, t)u (1) 

where u and y denote  the  input  and  output of the system and 
x denotes  the  state of the system. The  function f :  61" X X 
61 + 61" is a continuous  ndimensional  vector  function  and g: 
61" X 61 X 63 + 63 is a continuous scalar function. It is assumed 
that  the  state equation  in (1) has a unique  solution  for  any 
initial state x0 E 61". The  output equation in (1) is such that 
the  output y is equal to the  product between the  input u and 
the scalar function g. This special structure of the  readout 
map is what distinguishes a memristive system from  an arbi- 
trary dynamicai system [5] ; namely, the  output y  is zero 
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ward. Hence,  only  the one-port case will be discussed in  this paper. 
'The  extension  of  this  defmition to  the multiporr case is straightfor- 

whenever the  input u is zero, regardless of the state x which 
incorporates the memory effect. This zero-crossing property 
manifests itself  vividly in  the form of a Lissajous figure which 
always  passes through theorigin. 

An nth-order2 currentGontrolled memristive one-port is rep- 
resented by 

x = f(x, i,  t) 

u = R ( x ,  i, t)i (2)  

and an nth-order voltage-controlled memristive one-port is 
represented by 

x = f(x, u ,  t )  

i = G(x, u, t ) u  (3) 

where u and i denote  the port voltage and  current, respectively. 
The  functions f, R ,  or G are  similarly defined as f, g in (1). 
In the special  case when the one-port is time-invariant' and 
R(resp. G )  is not an explicit function of i(resp. u )  we have 

x = f(x, i )  (resp., x =f(x, u ) )  

u = R(x)i (resp., i = G(x)u).  (4) 

To motivate the significance of memristive systems, we  pause 
to present some  examples of physical devices  which should be 
modeled as memristive one-ports, but which  have so far been 
improperly identified. 

Example 1 -Thermistor 
Thermistors have  been  widely  used as a linear resistor whose 

resistance varies with the ambient  temperature 161 . In  partic- 
ular, a negative-temperature coefficient thermistor is charac- 
terized by  [71 

where 0 is the material constant: Tis  the absolute  body  tem- 
perature of the  thermistor,  and TO  is the  ambient  temperature 
in kelvin. The  constant R o ( T o )  denotes  the cold temperature 
resistance at T = T o .  The  instantaneous  temperature T ,  how- 
ever, is known to be a function of the power dissipated in  the 
thermistor and is governed by  the heat  transfer  equation 

p(t) = u ( t )  i(t) = 6(T-  TO) + C - d T  
dt ( 6 )  

where C is the  heat  capacitance and 6 is the dissipation con- 
stants of the thermistor which  is defined as the ratio of a 

namical system. 
'The  number n denotes  the  dimension of the  state  space of the dy- 

'The  dynamical system (1) is said to be he-invuriunt if both f and 
g are not explicit  functions of time t .  

approximated by a  constant over the temperature  range of interest. 
'Although 6 increases slightly with increasing temperature, it may be 

both To and T - T o .  However,  for simplicity, S is assumed to be con- 
'Strictly  speaking, 6 is  not a  true  constant,  but v a r i e s  slightly with 

stant  here. 
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I 1 .  

-I- 
Fii. 1. The Hodgkin-Huxley model. 

change in  the power dissipation to  the resultant change  in the 

systems. In particular, the potassium channel of  the Hodgkin- 
Huxley  model should be identified as a jirst-order time- 
invariant voltage-controlled memristive one-port and the 
sodium channel should be identified as a second-order time- 
invariant voltage-controlled memristive one-port. 

Example 3-Discharge Tubes 

Francis [ 9 ] described the behaviors of  discharge tubes  by 

li = a i u - p n  ( 1 Oa) 

body  temperature.  Substituting (5)  into ( 6 )  and by rearrang- 
ing terms, we obtain where a, 8, and F are  constants  depending on the dimensions 

of  the tubes and the gas fillings. The variable n denotes the 

We observe from ( 5 )  and (7) that a thetmistor is in  fact  not  a 
memoryless temperaturedependent linear resistor-as is usually 
assumed to be the case-but rather afirst-order  timeinvariant 
current-controlled memristive one-port. 

It follows from (lob) and (1Oc) that the discharge tube 
should also be modeled as a first-order time-invariant current- 
controlled memristive one-port. It is unfortunate  that while 
researchers have long regarded such discharge tubes as neon 

Example  2-Ionic Systems 
The celebrated Hodgkin-Huxley circuit model [SI of the 

nerve axon  membrane is shown in  Fig.  1.  Hodgkin and Huxley 
described the potassium channel  conductance gK and the 
sodium channel  conductance gNa as time-varying conduc- 
tances whose variations  are  functions of the  solutions of first- 
order  differential  equations.  The potassium channel + de- 
scribed by 

- 0.125  exp (7) ‘)K+EK 

h’ = 0.07 exp ( 2o ) (1 - h )  UNa - ENa 

bulbs and fluorescent l&ps as dynamic devices, they have 
failed to recognize their memristive properties. 

11. GENERIC PROPERTIES OF M E M R I S T I V E  ONE-PORTS 
Since many memristive devices  have been incorrectly classi- 

fied, our  next objective will be to derive the generic properties 
which clearly distinguish a memristive device from  other sys- 
tems. For  simplicity, we will restrict  our  study to current- 
controlled memristive one-ports.6 

Property I -Passivity Criterion’ 
Let a  current-controlled memristive one-port be time- 

invariant and let  its  nonlinear  function R(*)  associated with the 
readout  map  satisfy the constraint R ( x ,  i )  = 0 only if i = 0. 
Then the oneport is passive if and only if R(x ,  i )  2 0 for  any 
admissible input  current i(t),  for all t > t o ,  where to  is chosen 
such that x ( t o )  = x * ,  where x* is the  state of minimum energy 
storage [ 101 . 

Proof: If R(x ,  i) P 0, then 

t t lo I, ~ ( 7 )  i(7) d7 = R(X(7), i(7)) i2(7)d7 2 0, 

for all t 3 to 

and  hence the one-port is passive. We prove the necessity part 
by contradiction.  First,  suppose that  the one-port is passive 
and R(x*, io) < 0 for some io E 61. Then by the  continuity of 
the  function R in bin+’ ,  there  exists an open  neighbor- 
hood BO [(x *, io), 61, of (x *, io) € R”+l in which R(x ,  i )  < 0. 
Hence there  exists an input waveform i(*) such that i(to) = i o  
and 

where and  EN^ are constants. It follows from (8) and (9) 
that since the time-varying conductances  cannot be specified -. 6The same property  obviously  applies to the “dud”voltage-controlted 

as an a priori function Of time,  they are actually memristive ‘Thir criterion can be e d y  extended to the time-verying caae. 
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where t l  depends on BO and i ( * ) .  But this contradicts the as- 
sumption that  the one-port is  passive andR(x*, i o )  > 0 for  any 
admissible io  E bi. 

Suppose next  that R ( x A ,  iA ) < 0 for some ( X A  , iA ) E &”+’ 
where x A  # x*.  Then io  can be chosen  such that we  can  draw 
a “connecting” arc from (x*, i o )  to ( X A  , iA ) whose open arc 
(excluding the  two end points) does not  intersect the hyper- 
plane i = 0. That is, if iA > 0 choose io > 0 and if iA < 0 
choose io < 0. Since R ( x * ,  io) > 0 and R ( x A ,  i A )  < 0 by as- 
sumption, and since the  function R is continuous  in (X, i ) ,  
there exists a point (xg, i g )  on r at which R ( x g ,  i g )  = 0. 
However, this  contradicts the assumption that R ( x ,  i )  = 0 only 
if i = 0, and  hence R ( x ,   i )  2 0 for passivity to hold. . 
Property 2-No Energy  Discharge Property 

If a current-controlled memristive one-port satisfies the  hy- 
pothesis of Property 1,  then  the instantaneous power entering 
the one-port is always nonnegative. 

Proof: By hypothesis, R ( x ,  i )  2 0 for any admissible  signal 
pair (u,  i ) ,  and  hence the instantaneous  power  entering the 
one-port (i.e., p ( t )  = u ( t )  i ( t ) )  is  always nonnegative. 

Remark: Except  for pathological cases, it is always  possible 
to extract  stored energy from a passive RLC one-port by sim- 
ply connecting a load across it. However, for  the case of a 
memristive one-port which  satisfies Property 1, such energy 
discharge is never  possible. To emphasize this unique  property, 
we label it  the  “no energy discharge property.” 

Property  3-DC Characteristics 
A time-invariant current-controlled memristive one-port un- 

der dc operation is equivalent to a time-invariant current- 
controlled nonlinear resistor if f(x, Z) = 0 has a unique  solution 
x = X(Z) such that  for each value of Z E &, the equilibrium 
point x = X(Z)  is globally  asymptotically  stable [ 1 1 ] . 

Proof: Substituting x = X ( I )  in:” the  output equation in 
(2),’  we obtain V = R(X(Z), Z ) I  L? V(Z). Since X ( I )  is  globally 
asymptotically  stable, each value  of dc input current Z gives a 
stable, hence measurable, dc voltage V .  Hence the  function 
p(Z) can be interpreted as the V-Z curve of a time-invariant 
nonlinear resistor. . 

Remark: In practical analysis, Property 3 is stiU valid under 
low  frequency periodic operation so long as the period of the 
excitation is much larger than  the settling  time of the associ- 
ated  transient response. 

To illustrate the significance  of Property 3, the  dc character- 
istics of a thermistor with p = 3460 K, 6 = 0.1 mW/’C, TO = 
298 K, and R o ( T o )  = 8000 are derived from  (5)  and (7) and 
are shown  in Fig. 2 for 0 < I < 12.5  mA. Notice that  only  the 
curve in the first quadrant is shown since the  dc characteristic 
is symmetrical with respect to the origin.  Such dc V-Z char- 
acteristics are often supplied by  thermistor  manufacturers with 
the.steady  state  temperature specified along the curve. Prop- 
erty 3 can now be used to interpret  the use  of this curve and 
its limitations;  namely, the dc thermistor V-Z curve is useful 
only if the  thermistor is to be operated  under  dc or slowly 
varying input sighols. Observe that  the fact that a time- 
invariant memristive one-port  under  dc  operation behaves 
just like a nonlinear resistor is one reason why so many mem- 
ristive  devices  have been  improperly  identified as nonlinear 
resistors! 

3.0- 
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Fig. 2 .  The dc V-Z curve of a  typical  thermistor. 

Fig. 3. The potassium  channel  dc  characteristics. 
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Fig .  4. The dc  characteristics o f  a  short  neon  tube. 

The dc characteristic curve of the potassium channel (with 
& = 36 mO/cm2 and E K  = 12 mV) of the Hodgkin-Huxley 
model described by  (8) is shown in Fig. 3. Similarly, a typical 
dc V-Z curve of discharge tubes is shown in Fig. 4. Again, 
only the first quadrant V-Z curve is shown since it is sym- 
metrical with respect to the origin. Observe that all these dc 
characteristic curves pass through the origin-as they  should. 

Property  4-Double-Valued Lissajou Figure Property 
A current-controlled memristive oneport under periodic 

operation’ with i ( t )  = z cos u t  always gives  rise to a v-i L~S- 
sajous figure  whose  voltage u is at most a double-valued func- 
tion of i .  

Proof: In the representation (2), the  state equation has a 
unique periodic solution x ( t )  for all t 2 to for some initial 
state xo, by assumption. Hence, for any value of the current 
i E [-I, I ] ,  there correspond at most  two  distinct values of u. . 

‘Strictly speaking  we are  referring to  the timeinvariant  version of one-pori is said to  be in pcrlodic opermion when  its response is 
representation (2). periodic  with the same  period as that of the input. 
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Fi. 5.  Illustration o f  property 4 .  (a)  Possible Lissajou figure.  (b) Im- 
possible Lissajous figure. 

Remark: This property is dustrated in Fig. 5. Observe that 
the Lissajous f i r e  in Fig. 5(b)  cannot  correspond to that of a 
current-controlled memristive one-port, because at i = ip ,  there 
correspond  more  than  two  distinct values of u. 

Property  5-Symmetnc Lissajous Figure Property 
If the readout map  of a time-invariant current-controlled 

memristive one-port is such that R ( x ,   i )  = R(x ,   - i ) ,  then the 
u-i Lissajous figure corresponding to  the  input current i ( r )  = 
I cos at is open (i.e., not  a closed loop) whenever the  state 
x ( t )  is periodic of the same period as that of the  input i ( t )  and 
is half-wave symmetric." Moreover, it is odd  symmem'c with 
respect to  the origin whenever the  state x ( t )  is periodic of the 
same period as that of i ( t )  and is quarter-wave symmetric. 

Proof: If both x ( t )  and i ( t )  are half-wave symmetric,  then  it 
follows from  the output equation u = R(x ,   i ) i  that 

where T is the period of both x ( t )  and i ( t ) .  Hence the pi 
curve does  not form a closed loop and is open.  If x ( t )  is 
quarter-wave symmetric,  then since i ( t  + 274) = -i(-t  + T/4) 
for all t E [O, T/41 when i ( t )  = ICOS ut, we obtain 

= -.(-t + z), for all r E [o. $1 
Similarly, we can show that u ( t  + 3T/4) = -u(-t  + 3T/4) for all 
t E [ 0, T/4]. Hence, the u-i curve is odd  symmetric  with re- 
spect to  the origin. m 

Property  6-Limiting Linear  Characteristics 
If a time-invariant current-controlled memristive one-port  de- 

scribed by (4) is bounded-input  bounded-state  (bibs) stable," 
then  under periodic operation it degenerates into  a linear time- 

Fig. 6. Frequency  response of Lissajous figures. 

~ b .  7. The smd-signal  equivalent  circuit. 

invariant resistor as the excitation  frequency increases toward 
infinity. 

Proof: It suffices to show that  the  state vector x ( t )  +x0 
where x0 is some constant  vector in dl", as the excitation  fre- 
quency w + 00. It follows from the bibs stability and the con- 
tinuity of the function f in (4) that for any bounded  input 
i ( t ) , f ( x ,   i )  can be written as 

N 

k=-N 
k #O 

f(x, i )  = a. + exp ( j k w t )  ak (1  1) 

where N is some integer  and the vectors a0 and &k belong to 
the space e" of n-tuples of complex numbers. Note that  the 
vectors a,, and a k  are bounded. From (4) and (1  1) we obtain 

X ( t )  = X ( t 0 )  + J]. f ( X ( T ) ,  i(7)) dT 
r 

= x. + iot(. + exp ( jkwT) 
N 

k  =-N 
k#O 

= x0 + * ( t  - t o )  + 
exp ( j k w t )  - exp ( j k w t o )  

j k w  a k  * 
k=-N 
H O  

Since x ( t )  is periodic and bounded by assumption, (1 2) implies 
a0 =Oandaso-*oo,thestatex(t)+xo. m 

Remark: When the memristive one-port is under  periodic 
operation,  different  initial  states x. will have to be chosen for 
different  excitation  frequencies. However, the state x ( t )  still 
approaches some constant  vector as the excitation  frequency 
increases toward  infinity. This property is illustrated in Fig. 6 ,  
where a family of Lissajous figures is shown shrinking to a 
straight  line as w + 00. 
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Fig. 8.  The  small-signal equivalent circuit for representation (4). 

Proof: Let the  input current i(t) be such that 

i ( t )  = I +  6i(t), where  SUptEe (6i(r)l<< IIl (13) 

and let  a time-invariant current-controlled memristive one-port 
be characterized by 

x = f(x, i) 

u = R ( x ,  i)i A h ( x ,  i). (14) 

If  we linearize (14)  about (X, I ) ,  where X is the solution  of 
!(x, I )  = 0, we obtain 

6 v  = - ah(X' I )  ah(X' I )  Si 4 c(X, Z)6x + d ( X ,  I)& ax ai 
6x + - 

where 

A(X,I) = 

and 

Taking Laplace transform of both sides of (1 5) and  (1 6) with 
Sx(0) = 0, we obtain 

s h x ( s )  = A ( X ,  I )  AX(s) + b(X, I )  AI(s) (21) 

AV(s) = c(X, I )  AX(s)  + d ( X ,  I )  AI(s).  (22) 

Solving for AX(s) from  (21), we obtain 

AX(s)  = [sl - A (X, I ) ]  -' b(X, I )  AI(s) (23) 

where 1 denotes an identity  matrix of order n .  
Substituting  (23) into  (22), we obtain 

AV(s) = {c(X,I)[sl - A(X,I)]-' b ( X , I )  + d(X , I ) )AI ( s ) .  

(24) 

Fig. 9. The small-signal Lissajous figures. 

It follows from  (24) that  the small-signal impedance for  a  time- 
invariant current-controlled memristive one-port  is given  by 

+ 81 + p2 sn-2 + - - + pn-l s + p, 
s" + a1 s"-, + a2 s"" + * - * 

(25) + an-1 s + an 

where ai, pi are  functions of (X, I )  E &" X &. Equation 
(25)  can be rewritten into  the form of a  continued  fraction 
expansion 

ZQ(S) = d ( X ,  I )  + 1 
(26) 

sc1 + 1 

R 1 +  
1 

sc2 + 

+ 1 

SC, +- 
Rn 

1 

where  again Ci and Ri are  functions of (X, I ) .  The  circuit  in 
Fig. 7 follows from  (26)  upon settingRo(X,I) = d(X,I). 

Remark 1: For the case  of time-invariant current-controlled 
memristive one-port described by (4),  the associated small- 
signal equivalent circuit is as shown in Fig. 8. Observe that 
Fig. 8 is obtained  from Fig. 7  upon replacing R d X ,  I )  by 
Ro(X),   Ri(X, I )  by IRXX, I )  and Ci(X, I )  by CAX, I ) / I .  When 
the biasing current I = 0, the small-signal input  impedance 
ZQ(S) reduces to that of a linear resistor Ro(X) and is there- 
fore  purely dissipative for Ro(X)  > 0. 

Remark 2: As the excitation  frequency of the small  signal 
6i(t) approaches  zero, the small-signal impedance ZQ(S) in 
Fig. 8  degenerates into 

n 

i=l 
ZQ@) = R O W  + IQ &(X, IQ) .  (27) 

The small-signal impedance  in (27) corresponds to the slope of 
the dc V-I curve at I = I Q .  The value Ro(X) represents the dc 
resistance at I = IQ and is equal to the small-signal impedance 
ZQ(S) as the excitation  frequency increases toward  infinity. 

The  frequency  dependence of the small-signal  Lissajous f i i  
ures  about  the  operating  point I = IQ is depicted  in Fig. 9. 
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where a b - L  < O ,  P ~ V I = R ( T ) 1 2  
T2 

Fig. 10. The smallsignal  equivalent  circuit for the  thermistor. 

This behavior  has  been  observed in many physical  devices and 
systems,  including  thermistors  and ionic systems12 [ 121 . 

Remark 3: The small-signal equivalent circuits for  the therm- 
istor and the potassium  channel of the Hodgkin-Huxley model 
are shown in Figs. 10  and 11. In Fig. 10, C1 A C/2aPR(T), 
where a - < 0 and P = VI. Since Ci is negative, the 
thermistor is inductive  under small-signal operation.  In Fig. 1  1, 
the small-signal admittance YQ(s) of the  potassium  channel 
can  be  shown to be inductive for V > 0 and capacitive for 
V <  0. 

Property  8-Local Passivity  Criteria 

A first-order time-invariant current-controlled memristive 
one-port  described  by (4) is locally  passive with  respect to an 
operating  point I = IQ if and  only if, 

ii) R ( X )  2 0 and i 
I 

Proof: The small-signal impedance of a first-order time- 
invariant currentcontrolled memristive one-port  described  by 
(4) is 

- - r  a m ,  I )  m x )  

In  order  for ZQ(S) to be the impedance of a passive one-port, 
it is necessary and sufficient that ZQ(S) be positive real. The 
conditions given in (28) follow directly from the well-known 
pr criteria [ 131. 

tional behaviors that he collectively  referred to these  elements as an 
"Mauro (121 was so perplexed  and  mystified  by  these  unconven- 

where a n  ( v i :  O . O 1 ( v + E K + l O ~  

cxp ( v + E K + l O I / 1 0  [ I-' 

Fig. 1 1 .  The smallaignal equivalent  circuit for the  potassium  channel 
of the  Hodgkin-Huxley  model. 

Remark: The  potassium  channel of the Hodgkin-Huxley 
model violates the second criterion (with i replaced by u )  at 
V = 10 mV and  hence is locally active at this operating point. 
This is verified by  the  fact  that in Fig. 3 the slope of the V-I 
curve at Y = 10 mV is negative. For  the case  of the thermistor 
described by (5) and (7), the second criterion is also violated 
at I = 1.5  mA, and  hence  the  thermistor is also locally active 
at  this  operating  point. Observe that  the slope of the V-I 
curve at I = 1.5 mA is negative,  which is consistent with the 
local activity of the thermistor. 

General Remarks on the  Generic  Properties 
The  properties derived above  can be  used not only to iden- 

tify  those  memristive devices and  systems which  have so far 
eluded  a correct identification, but also to suggest potential 
applications. For  example, the local activity of the  thermistor 
and the potassium  channel of the Hodgkin-Huxley model  has 
important practical significance. Indeed,  the  two-thermistor 
circuit shown  in  Fig. 12  has  been designed to function as an 
ultralow-frequency oscillator by biasing the  thermistors in 
their locally active regions [ 141. It is also  well known that  the 
Hodgkin-Huxley model is locally active and  hence is capable 
of firing  nerve  impulses.  Many more  examples  abound  which 
possess the generic properties of memristive  systems [ 121. 

There are good reasons to believe that many  physical  and 
biological systems  should be modeled as  memristive one-ports. 
To  identify  such devices and  systems, we look for  the follow- 
ing properties of the one-port ?7 under investigation: 

1) The dc characteristic curve of fl passes through the origin. 
2)  The u-i Lissajous figures corresponding to any  periodic 

excitation having a  zero mean  value  always  pass through 
the origin. 

3) The  one-port fl behaves as a linear resistor as the excita- 
tion  frequency w increases toward 

4) For  a memristive one-port ?7 which admits the representa- 
tion  (4),  its small-signal impedance  degenerates into  a 
pure resistor under  zero bias, but  becomes either induc- 
tive or capacitive depending on  the operating  point. 

tive  one-port does not behave as a linear reststor as w increases  toward 
"If a one-port is not bibs  stable, then it is possible that the memris- 

anomalous  impedance! i n f i i y .  -This situation,  however, is highly  pathological. 
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* the  following  Fourier series representation: 
I , 

Fig. 12. A two-thermistor  circuit  which  functions as an ultralow- 
frequency  oscillator. 

5) The  order of the small-signal impedance (or admittance) 
is invariant with  respect to  the dc biasing current  (or 
voltage). 

III. A CANONICAL MODEL FOR MEMRISTIVE ONE-PORTS 
Once  a device or  system has been identified as memristive, 

the  next  task will be to find  a suitable mathematical  model 
describing its behavior. Our objective in this section is to pre- 
sent a  canonical  model which will correctly mimic the steady 
state  response of memristive  one-ports to  the following class  of 
input “testing signals” : 

1) DC or slowly  varying  waveforms. 
2) Sinusoidal signals of arbitrary amplitudes  and frequencies. 
3) Sinusoidal signals  of arbitrary amplitudes  and  frequencies 

superimposed on  top of a  dc bias. 
We will denote  the above  class  of input testing signals by 

214 { u ( t ) A A o + A  coswr I ( t ,w )Eb iX  [1,=)} (30) 

where (Ao ,  A )  E bi X bi+, & 4 [O,=). The  constantsA0  and 
A represent the dc  component  and  the  amplitude of the sinu- 
soidal component of the  input testing signals, respectively. 
Observe that  the lower  bound on  the frequency range in (30) 
is not  a stringent restriction since in practical applications we 
can  always normalize  any given set of nonzero  frequencies so 
that  the lowest  frequency  becomes unity. In (30), the value 
of A is set equal to zero  for  dc  operation, while the value of 
A0 is set equal to zero .for sinusoidal excitations. When the 
one-port is operating in  the small  signal mode, A will be set 
equal to a small positive number  and A0 will be set equal to 
some biasing  value. These testing signals are chosen  mainly 
because they are the ones  most  commonly used in laboratory 
tests. Although our model is derived to yield exact simula- 
tions  only  for  these testing signals, the  fact  that  our  model also 
pbssesses all the generic properties presented in  the preceding 
section suggests that  it should also give reasonably realistic 
simulations for arbitrary testing signals. 
Our main assumption in  the following  derivation is that  the 

system  response y ( t )  tends  to  a unique  steady  state for each 
input u ( t )  E IJ such that  the  function p ( t )  4 y ( t ) /u ( t )  tends 
to a  periodic waveform of the same period as that of the  input 
u ( t )  in steady state.14 Observe that each input testing signal 
u ( t )  E % is uniquely specified  by three  numbers, namely;Ao, 
A ,  and w. Hence for each  combination of { A o ,  A ,  w } ,  there 
corresponds  a  unique p ( t ) .  In  other  words, p ( t )  is actually a 
function of A0 , A ,  and w and to be precise, we may denote  it 
by p ( t ;  A o ,   A ,  w). Let the steady-state  component of p ( t )  be 
denoted  by ps ( t ) .  Since the  function p, ( t )  is periodic of the 
same period as that of input u( t ) ,  by assumption, it admits 

put frequency,  but  neither  subharmonics  nor  incommensurate  fre- 
“The  frequency of p ( r )  in  steady  state  may  be  a  harmonic of  the in- 

quenciea are allowed in p ( f ) .  

N 
ps ( t )  = a o ( ~ o ,  A ,  + b k ( A 0 ,  A ,  w )  cos k a t  

k= 1 

+ b k ( A o , A , w ) s i n k w t }  (31) 

where the integer N is an arbitrary number which is deter- 
mined by ps(t).” The  Fourier coefficients in (31) are deter- 
mined by 

and 

These coefficients are  assumed to be continuous  functions of 
A0 and A in  the mean-square sense, and square-integra!le 
functions of w ;  namely: 1)  for  each e > 0 and fo: eacp (-40, 

A) E 61 X bi+, there exists a neighborhood Ns of (A0 , A )  such 
that 

and 

Ilbk(AO,A, 0)- bk(AO,A,  a ) l ILz  < e  (37) 

for all ( A o ,  A )  E N s ,  where L2 denotes the space  of square- 
integrable functions. 2) a o ( A o ,  A ,  *), a k ( A 0 ,  A ,  *) and bk(A0,  
A ,  .) are square-integrable functions of a, i.e., they belong to 
L?o,-). 

Before we present  a  canonical state-space model  for memris- 
tive one-ports which satisfies the preceding assumptions,16 we 
will introduce  two families of complete  orthonormal  functions 
in Lf$k,=). These  functions will allow a  unique  decomposi- 
tion of the  Fourier coefficients into  the product  between a 
frequency-dependent  component and  a frequency-independent 
component which depends  only  on A0 and A of the  input 
u ( t )  E 21. The  two families of complete  orthonormal  func- 
tions are defined  by [ 151 : 

”In  most practical case-s the  integer N is a  fmite  number. If it is not 
a r i t e  number,  then  we will approximate p&) by  a f i i t e  Fourier 
series  expansion  up to  the  Nth harmonic  term and model the approxi- 
mated  waveform. 

Fourier coeffxient containing terms  that are not functions of  the ex- 
“These  assumptions  can  be relaxed  such that whenever there is a 

citation  frequency w ,  then  the  w-dependent  terms are squareintegrable 
functions o f  w and the  windependent terms are continuous  functions 
of ( A o , . A ) .  The model  presented is also valid  under these  relaxed 
assumpttons. 
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where 4 denotes the set of natural numbers and Q, and PI,,, 
are constants  defined by 

n { 2 ( m + n ) -  11 

n 2 ( m -  n )  

2-1 

Q, 4 (41-  I)'/' 
2 

, m I 1 (40) 

n = l  
n#m 

6 {2(m + n ) +  1) 

02, = ti (41+ 1)1/2 n=l  
2 

, m 51. (41) n 2(m- n )  
n = l  
n#m 

The families ftk and .%k will be used shortly to construct  the 
readout map of our state-space model. To model the steady 
state response of memristive one-ports  subject to  the input 
testing signals u( t )  E 41, we propose  the following. 

Canonical  State-Space  Model  Representation 
State eq~at ion '~ :  

x l  = -a(t) x1 + b ( f )  u 

x 2  = -x1 + u 

x3 = p ( u  - x1 - x3) 

x 4  = p(-x2 - x4) 

where x0 4 [xl(0), xz(O), x3(0), x4(0)1 = 0. 
Output  equation: 

y=g(xl,xZ,x3,X4,u)1( 

where 
1 - e-Kr 1 

a(t) = 
t + ( I /K)  e-Kt ' r + ( I /K) emKt 

b(t) = , 

and p ( - )  is a  monotonically increasing nonlinear  function 
whose graph is similar to the  diode  characteristic curve. The 
nonlinear  map g ( * )  in the  output equation  (42b) is defined by 

(43) 
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following Fourier coefficient  expansions: 
00 

502(Ao,A) = a o ( A o , A , w ) a l I ( o ) d o  (44) 

OD 

'YkI(AO,A) = ~ ~ k a k ( ~ 0 , d , ~ ) a k 2 ( ~ ) d ~  (45) 

6 k 2 ( A 0 , a ) = ~ / k ) k ( A o , A , o ) b k ~ ( o ) d o .  (46) 
0 

The  functions ao(-), ak(')  and  bk(')  in  these  equations  are 
themselves Fourier  coefficients of p,(t) defined  in  (31) while 
akI(*) and bkl(-)  are basis functions defined  in (38) and  (39). 
In (431, N is a  fixed  integer  defined via (31)  and  Tk(.), Uk(-) 
are the Chebyshev polynomial  functions of the first  and sec- 
ond  kind,  respectively; namely [ 161 , 

where [k/2l denotes largest integer less than or equal to k/2. 
Observe that in  spite of the seemingly complicated algebraic 

structure of the preceding canonical  model, the only model 
parameter  and  model  functions that ,;eed to be  identified are 
the  integer M and (2N + 1)M nonlinear functions, cor(.), 
Tkl(') and 6k2('), and the nonlinear function  p(.). As men- 
tioned earlier the  nonlinear  function p ( * )  may  be any strictly 
monotonically increasing Lipschitz  continuous  function whose 
graph is similar to  the diode  characteristic curve. However, for 
simplicity, we wiU choose p ( * )  to be a piecewise linear function 
defined by [ 151 

p ( e )  A a e  + ( l / a  - a)r (e )  (49) 

where a E (0,l) and r ( * )  is a  unit ramp function, i.e., 

d e )  4 I e ,  for e 2 0  
0, fore<O. (5 0) 

Notice  from (49)  that  the nonlinear  function p ( - )  is uniquely 
specified by the parameter a E (0, 1). Hence, only 'the value 
of a need  be identified. 

We will present an algorithm that will determine the model 
parameters M and a and the (2N + l)M nonlinear  functions. 
Before we state  the algorithm let us first define the following 
sfop rule. Given any set of input  testing S i g n &  410 4 {ujjk(t) 
4 + cos Wkt}, where the subscripts i ,  j ,  k range from 
1 to N4., NA , Nw , respectively, the performance  index of  the 
model mth  respect to these  testing signals is defined to bel8 

where M is an integer, and {or(* ) ,  rkl(*) and  6kl(')  are scalar 
nonlinear functions of x1 and x3  which are  identified via the 

equations  upon  introducing two additional  state  variables. In psrticu- 
l7 Equation (42a) may be  replaced  by  a time-invariant system of state 

lar, if we choose j1 = y z  , j a  = K ( l  - ya)  with  initial  state yl(0) = 1 / K ,  
y,(O) = 0 ,  then a(t) = yz/yl  and b ( t )  = l / y , .  

where ps(f ;  uijk) denotes the steady-state  component of p ( f )  
in  the original system and &(t; uijk) denotes  the  steady- 
state  component of p^(t) in the  model  subject to the  input 

which  both p( t )  and &t) attain  steady  state  has  been  set to zero. Hence, 
"We  are  assuming without loss of generality  that the  time instant at 

by  this assumption, p&) and $At) are periodic on R+ after an appro- 
priate time  translation. 
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ujjk(t) E QD. Another error index to  be  used is" state by 

where U O ( - ) ,  a n ( * ) ,  and b n ( * )  are the Fourier coefficients of 
p s ( t ;  ujjk) defined in (31)-(34), and a d ( * ) ,  b,l(.) are defined 
in  (38) and (39).  The  error EM is a function of the integer M 
and the nonlinear functions Sol( .), 6,1( .). To initiate the algo- 
rithm, we need to  prescribe an upper  bound qmax E (0, 1)  for 
the performance index q.  We also  need to  assume an initial 
guess on  the iterative parameter a E (0, 1). 

Model Parameter  and Function  Identification  Algorithm 
Step 0: Select an a E (O,l),  and qmax E (0, 1). Set 1 = 1. 
Step 1: Compute tol(Aoi, Ai),  7nI(Aoi ,  Ai )  and Sd(Aoi, Ai)  

from  (44)-(46)  for n = i ,  2, * * , N for each i ,  j rang- 
ing from  1 to  NA, and NA , respectively. 

Step 2: Set M = I and compute EM using (52). 
Step 3: If e~ > qmax/3 set I = 1 + 1 and go to  Step 1. 
Step 4: Compute the performance index q using ( 5  1). 
Step 5 :  If q > qmU, set a = a/2 and go to  Step 4.  Otherwise 

stop. 

The convergence is guaranteed by the following theorem. 

Main Theorem 
If the Fourier series representation of ao(Ao , A ,  .) relative to 

the basis functions in e l ,  ak(A0, A ,  .) relative to the basis 
functions in &, and bk(A0, A ,  e )  relative to the basis func- 
tions in .$k converge uniformly over the set of testing signal 
components { (Aoi ,  Ai)} for i ,  j ranging from  1 to  NA, and 
NA , respectively, and for k = 1,  2, * * * , N ,  then for each 
q m a  > 0 the preceding algorithm terminates in a finite num- 
ber of iterations. 

Proof: For each(Ao,A),thescalarst~l(A~,A),rW(A~,A), 
and 6 ~ ( A o ,   A )  as defined by (44)-(46) are the Fourier coef- 
ficients of ao(A0,  A ,  -), ak(Ao,A,  -) and bk(Ao,A;)relative 
to  the basis functions  in  the complete orthonormal sets d l ,  
Qk ,  and %k.  Hence by the uniform convergence hypothesis, 
there exists a finite integer M such that EM defined by (52) is 
less than  or equal to  qmax/3  for any qma > 0, i.e., 

EM ~maxl3. (53) 
From Lemma A-1 of the Appendix A, {ol(Aoj,Aj),rkl(AOj, Ai)  
and 6kl(AOi, Ai) are continuous  functions of (Aoj, Ai).  From 
Theorem A-1 in  the Appendix A, there exists a 6 E (0, 1) such 
that  for any a E (0, 6 ) ,  the steady state  solution of  t\e s tge 
equation  (42a) yields arbitrarily close approximations Aoi,   Ai ,  
and G k  to  ~ , i ,  A ~ ,  and u k ,  respectively. ALSO by the con- 
tinuity of the Chebyshev polynomiak Tk( * )  and uk( * )  of the 
first and second kind as defined in (47) and  (48), cos n u t  and 
sin n u t  can  be approximated arbitrarily closely in  steady 

"The  second error index EM is used to ensure that  the  model param- 
ster M and the nonlinear  model functions Sol (e), TnI(.),  and 6, l ( . )  are 
determined properly o that the Fourier coefficients a,,(*), a,(.) and 

and Wk. 
b,(.)  can be  approximated  closely for the given components Aoi, Ai ,  

where u E 'lJ, respectively. For convenience, we denote these 
approximating functions by 

and 

From  (31), (431, and (511, we obtain 

It follows from (54) and the triangular inequality that 
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where E c n ( t ) ,  e,$) are defined by 

C,(t) = cos n u t  + Ec,(t) (56) 

S,(t)  = sin n u t  + es,(t). (57) 

Hence, it follows from  (52) and Step 3 of the algorithm that 

El < ~ m a x / 3 .  (58) 

Moreover,  since ~ o z ( - ) ,  m r ( * ) ,  S , l ( * ) ;  a d ( . )  and bnf (* )  are 
continuous, it follows from Theorem A.l in Appendix A that 
there exists a S 1  E ( 0 , l )  such that  for any a E (0,6,) 

E2 g VmaxI6. (59)  

Since the Fourier coefficients of p,(t) are by assumption 
bounded for any input testing signal uijk(t), there exist a S2 E 
(0, 1) such that for  any cy E (0,S2) 

E3 Q Vmax/6. (60) 

Hence, for any cy E (0, 81, where F = min { a l ,  S2},  we obtain 
from ( 5 5 )  and (581460)  the inequality 

V Vmax. 

The preceding model is canonical in the sense that given any 
memristive one-port satisfying the technical assumptions de- 
scribed earlier, we can construct  a dynamical system model 
having the same structure given  in (42). The state  equation 
(42a) is fixed-independent of the device or system being 
modeled-except for the parameter a defining the nonlinear 
function  p ( - )  which has to be chosen properly so that the time 
constant of the model is much smaller than the period of the 
input signals.20 To illustrate  the  implementation and the 
validity of the preceding algorithm, we present next a hypo- 
thetical memristive system and then derive its associated 
model. We choose a  hypothetical example rather than a real 
device  in order that  the  input-output signal pairs can be gen- 
erated accurately on a digital computer. 

Example: 
Let )7 be a fifth-order memristive one-port characterized by 

x1 = -2x1 + 2x2 i 

x2  =-x2 + i 
i3 = - 4x3 + 2x4 i2 

x4 =-2x4 + i2 

x5 = 1 - x5 (61a) 

u = ( x 1 + x ~ + x 3 + x ~ + x 5 ) i ~ R ( x l , x 2 , x ~ , x 4 , x ~ ) i .  (61b) 

The block diagram for this system is shown in Fig. 13. The 
steady state component of R(x( t ) )  of the zero-state solution 
x ( t )  due  to the input current i ( t )  = A .  + A cos ut has been 
found analytically and is given  by 

ps(t) A R ( x ( t ) )  
4 

=ao(Ao,A,w)+  {a,(Ao,A,w)cosnwt 
n=1 

+ b n ( ~ o ,  A ,  w )  sin nut} (62) 

x 2  

7 \ 

"This  choice is to  ensure that  for any input frequency  the  canonical 
model is capable of detecting  the  components of the  input signal cor- 
rectly  in  steady state. Otherwise, the solutions x g  and x, in (42a) may 
never reach the  steady  state and hence  fail to  detect  the peak values of 
u - x, and - x , .  

\ 

Fig. 13. The block diagram for  the  hypothetical  example  in Section III. 

where 

b 1 ( A o , A , a ) = -  4Ao Aw + (4Aa + 2A2) - A0 AU 
w 2 +  1 w2 + 4  

+ A ~ A ~ ~  
(a2 + 1) (a2 + 4) 

4A2w ( A I )  w + 16A8AZo 
b2(Ao,A, w)= 7 + A$ + - - 

w + l  2 w2 + 1  (w' +412 

The model parameters and model functions were identified 
from the above data and from the system response to the in- 
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0.0 I I -~ ~- ~ 

0.0 1.6 3.2  4 . 8  6.4 
T ime ( r e c )  

Fig. 14. The steady  state  model  response versus system  response. 

put testing signals 

~ ~ ~ = { ~ ( ~ ) = A ~ ~ + A ~ c o s w ~ ~ ~ A ~ ~ , A ~ E { ~ , ~ , ~ , ~ , ~ } ,  

O ~ E  {I ,  2 , 3 ,  lo4}}. 

The high "testing frequency" w = 10 000 is  used to  segregate 
the frequency independent component of the Fourier coef- 
ficient a o ( A o ,  A ,  w) in ( 6 3 )  (see footnote  16). The model 
parameters determined by the algorithm subject to qmax = 0.5 
is found to be 

(M, a)  = ( 3 ,  1/15n). ( 7 2 )  

There are a total of 28 nonlinear model  functions. Observe 
that if the  Fourier coefficients contain no frequency indepen- 
dent components then only 27 (i.e., ( 2 N  + 1) M, where N = 4, 
M = 3 )  nonlinear model functions need be identified. The 
final nonlinear function g(*) for this model is given as follows: 

g ( x l , x Z , X 3 1 x 4 , i )  

( 7 3 )  

where the nonlinear model  functions T(*) ,  cor( - ) ,  m r ( - ) ,  and 
& & ( e )  are identified using the preceding algorithm. Standard 
computer  optimization  techniques are then used to fit  the  data 
points defining each model function into a two-dimensional 
polynomial in x 1  and x 3 .  The  complete descriptions for 
these functions are  listed  in Appendix B. 

To verify that  the model can indeed mimic the original  sys- 
tem for any input signal that belongs to  the set 910, we com- 
pute the predicted steady state response &(t) using the model 
as well as the exact steady state response p,(t) of the given  sys- 
tem due to an input i ( t )  = A .  + A  c o s p ,  where ( A o ,  A ,  w) = 
(1, 1, 1). The resulting  waveforms of p,(t) (dotted curve) and 
ps(t)  (solid  curve) are shown in  Fig. 14. Note the remarkable 

E ,' 

-3.0 
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.1 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

Excitation 

Fig. 15 .  Frequency  dependence of Lissajous figures for the  model 
(dotted curve)  and the  system  (solid  curve). 

Fig. 16. The  dc  characteristics of the  model  (dotted curve) and the 
system  (solid  curve). 

resemblance between the  two waveforms.  To further illustrate 
the properties of the model, we choose an arbitrary  (not a 
member of 210) sinusoidal input i ( t )  = A cos ut with A = 1. 
The frequency dependence of the Lissajous f i r e s  of both  the 
model (dotted curve) and the original system (solid  curve) is 
shown in Fig. 15. Observe that as the  excitation frequency in- 
creases the Lissajous  figures  of the model and those of the orig- 
inal system shrink and tend to  a straight line passing through 
the origin. The dc characteristic curves of the model (dotted 
curve) and that of the original system (solid curve)  are depicted 
in Fig .  16. The model was also tested using a frianguhr input 
signal of period 2n defined as follows: 

The  output voltage  waveform  of the model (dotted curve) and 
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Time 

Fig. 17. The response due to a triangular input for the  model  (dotted 
curve)  and the  system (solid  curve). 

that  of  the original system (solid curve) are shown in Fig. 17. 
Observe that  there is a close similarity between the  two wave- 
forms in spite of the fact that  the  input signal is not a member 
of the class  of input s igna ls  ?J defined in (30). 

IV. CONCLUSIONS 
A broad  generalbation of memristors to an  interesting class 

of nonlinear devices  and systems called  memristive systems has 
been presented.  The most salient feature of memristive sys- 
tems is its zero-crossing property. Observe that in spite of the 
memory effect which normally introduces phase shifts in 
conventional  systems,  the output of a memristive system is 
zero whenever the input is zero and hence the  input-output 
Lissajous figure always passes through  the origin. Roughly 
speaking,  therefore, we could say that  a memristive system is a 
"zero  phase shift"  dynamic system. Various generic prop  
erties of memristive systems have  been  derived and shown to 
coincide with those possessed by many physical devices and 
systems. Among the various properties of memristive sys- 
tems,  the  frequency response of the Lissajous figure is es- 
pecially interesting. As the  excitation  frequency increases 
toward infinity,  the Lissajous figure shrinks and tends to a 
straight line passing through  the origin-except for some 
pathological cases where the bibs stability  property is not 
satisfied.  The physical interpretation of this  phenomenon is 
that  the system possesses certain  inertia and cannot respond 
as rapidly as the fast variation in the excitation waveform  and 
therefore must settle to some equilibrium state. This implies 
that  the hysteretic  effect of the memristive system decreases as 
the  frequency increases and hence it eventually degenerates 
into  a purely resistive system. Under small-signal operations, 
the memristive one-port can  be either inductive or capacitive 
depending  on the biasing  point,. 

We believe that many devices  and systems which  have so 
far been identified as dissipative should  actually be modeled 
as memristive systems. Only by using such a model can the 
dynamic behavior be properly  simulated.  Finally, we remark 
that the  model  presented can be made exact  under dc ,  small- 
signal ( for  all operating points) or sinusoidal (with  dc  compo- 
nent)  excitations. Even though our canonical  model  contains 
a time-varying component in the  state  equations; namely i 1  = 
a ( t ) x l  + b( t )u ,  we observe that both a( t )  and b ( t )  tend to 
zero in steady  state. Hence, under steadydate operation, our 
canonical  model degenerates into  a time-invariant  dynamical 
system. Furthermore, if the class  of input  testing signals is con- 

fined to only purely sinusoidal waveforms, then  our  canonical 
model can be drastically simplified to  a dynamical system 
characterized by a third-order  time-invariant state  equation 
and a much simpler output  equation. 

APPENDIX A 
Lemma A.1 

The S d a r  functions { o l ( ' ) ,   T k l ( * ) ,  and 6kl( .) defined Via 
(44H46)  are continuous  functions of ( A o ,   A )  E 63 X a+. 

Proof: From (44), 

' Y w ( A o , A ) -  'Ykl(Aho,$)= a k ( f f o , A , O )  
J1j 

- a&&, 2, a)) a ~ ( u )  d o .  (A. 1) 

From (A. 1) and the Schwarz inequality, we obtain 

I 'Ykl (Ao,A)-  'Yw(A^o0,&I Q [[i Iak(A0, A ,  a) 

112 

- ak(Ah0, Ah, a) 1' d U ] '  [ 1,; I akl(W) 1' d a ]  . (A.2) 

The  normality of aw( - )  implies that 

l y & o , A ) -  T ~ ( A ^ , , ~ I  Q [ [ ; i a k ( A O , A , a )  

- ak(Aho,Ah, w)12 d u  . (A.3) 11" 
Since a k ( - ,  ., W )  are mean-square continuous (see (36)), by as- 
sumption, y ~ ( ' )  is continuous  in ( A o ,   A )  € & X &. Similar 
arguments reveal that {or(-)  and a,(*) are  continuous  in ( A o ,  
A ) E 6 I X  61,. 

Lemma A.2 
The steady-state  solution of 

= - a ( t ) x l  + b ( t )  tl (A.4) 

where u ( t )  = A o   + A  cos ut, xl(0) = 0 tends to a  constant A o .  
Proof: In (A.4), a ( t )  and b ( t )  are given by (42c); namely, 

1 

Hence, the function t I+ - a ( t )  x1 + b ( t )  u ( t )  is continuous and 
the  function x1 I+ - a ( t )  x1 + b ( t )  u is Lipschitz continuous 
with  continuous Lipschitz function  on &. By the  funda- 
mental  theorem of differential  equations [ 5  l ,  [ 171,  there  ex- 
ists  a  unique  solution x1 ( t )  on & (for x1 (0 )  = 0 )  

It follows from (AS) that x l ( t )  corresponding to u ( t )  = A0 + 
A cos ut tends to A o ,  i.e., x1 ( t )  + A0 as t + oq 8 

Lemma A.3 
Consider the fintorder differential  equation 

i 3  = p ( u -  x1 - x3), x3(0) = O  
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where the nonlinear function p (  -) is defined by (49), x1 is the 
solution of (A.4) and u ( t )  = A .  + A cos ut. Then for each 
E > 0, there exists a 8 E (0, 1) such that  for any a! E (0, 81, 
the  solution x 3  ( t )  tends to a constant A ; namely 

lim I x g ( t ) -  AI < E .  (A.7) 

Proof: From Lemma  A.2 the steady-state component of 
x 1  ( t )  is A o .  Hence for t 2 t o ,  where to is a sufficiently large 
number, (A.6) is equivalent to 

t-+ - 

;3 = p ( ; i -  x 3 )  (A.8) 

where ii(t) = A cos ut. The inequality (A.7)  follows from 
(A.8). For a proof of this assertion see [ 15 1 .  rn 

Remark: The differential equation (A.8)  describes a peak 
detector and in steady  statez1  the solution x 3 ( t )  for an arbi- 
trary initial condition is arbitrarily close to  the peak  value of 
any periodic waveform I( -). 

Theorem A. l  
Given any E > 0, there exists a 6 E (0, 1) such that  for any 

a E (0, 6), and for any input signal u ( t )  = A .   + A  cos ut the 
steady-state solutions to  (42a) satisfy the following  in- 
equalities: 

1x1 - A o I <  E (A.9) 

I x ~ - A I < E  (A.lO) 

1 (1 + ;)? - < E (A. 1  1) 

- COS wt <e.  (A. 13) 

Proof: The inequalities (A.9) and (A.lO) follow from 
Lemma  A.2 and Lemma  A.3,  respectively.  Consider the dif- 
ferential equation  for x 2  in  (42a); namely, 

;2 = - x 1  + 11, X Z ( 0 )  = 0. (A.14) 

It follows from (AS) and u ( t )  = A o  + A  cos ut that 

(A.15) 

By steady Hate we mean that  the  trandmt  component tr negligible. 

Applying (A.15) and the triangle inequality, we obtain 

<-- A o + o  l + e  
K e 

(A.16) 

(where e = 2.71828 * .) for all t E 61+. Since the integral 

for sufficiently large K and for sufficiently large t ,  the solution 
x 2 ( t )  in steady state is such that 

(A.17) 

Hence as K and t increase toward infinity, x z ( t )  becomes al- 
most periodic." In (42a)  the solution of 

x 4  = p ( - x z  - x 4 ) ,   x 4 ( 0 )  = 0 (A. 18) 

is almost periodic in steady state when x 2 ( t )  is almost  pe- 
riodic because x 4 ( t )  is bounded on 61, and the function 
r I+ p ( - x 2 ( t )  - x 4 )  is almost periodic [17]. By a similar ar- 
gument used in  the proof of  Lemma  A.3, we can assert that 
given any E > 0 there exists a 64 E (0, 1) such that  for any 
a E (0, 64),  the steady-state component of x 4 ( t )  is arbitrarily 
close to  the peak  value of - x 2  ( t ) ,  i.e., 

Let 6 3  E (0, 1) denote the associated constant so that  for any 
a E (0, 6 3 )  the inequality (A.lO) is satisfied. If  we choose 
6 = min ( 6 3 ,  64} ,  then  the inequality (A.11) follows from in- 
equalities (A.lO) and (A.19).  Similarly, the inequality (A.12) 
follows from (A.17) and inequality (A.19).  The last inequality 
(A.13) follows from  the inequalities (A.9) and (A.lO). rn 

APPENDIX B 
The nonlinear model  functions v ( x l ,   x 3 ) ,   t 0 l ( x 1 ,   x 3 ) ,  

Y n l ( x l ,   x g ) ,  and 6,1(x1, x 3 )  are  described in terms of two- 
dimensional polynomials of the form 

N ~ = s  Nj=s  
p ( x l , x 3 ) =   a i j x l  3 . i - 1  xi-l  (B.1) 

Observe that  for each nonlinear model function  there are 25 
polynomial coefficients. The list of these coefficients is as 
shown in Table I, where aij is located at  the  ith row and the 
jth column associated with each function. These coefficients 
were determined using the Fletcher-Powell minimization 
algorithm 1181. 

i = l  j = 1  

i. p11 I = r ( f ,  11) > 0 such that  in any interval of length I there is a 7 such 
2 2 ~  function f(t) i. said to be crbnoa periodic if for any r) > 0 ,  there 

thatI f ( t+T)- f (r ) l< l l tor . l l tE(2 .  



222 PROCEEDINGS OF THE IEEE, FEBRUARY 1976 

TABLE I 
(a. . ‘  

11 
( a , , )  

.749 .024 .199 -.OS7 .135 -.022 .045  -.029  .007  34.719 

.662 -.&lo -.150 .lo8 -.013 

-005 -.010 .007 -.002 .ooo .134 -.132 .023 -005 -. 001 
-.021 .045  -.029  .007 -.001 

Y42(xlsx3) 1.510  .420  .485 -.040 .006 
.038 -.078 .051 -.013 . 001 

.488 .013 -.003 -.OOO . 000 -. 000 .001 -.001 .ooo -.ow 
.407  -.073  .708  .127 .048 

a196 -a373  .293 -.089 .009 
T 4 3 ( ~ 1 # ~ 3 )  .057  .643  2.764 .243 -.024 

-. 351 .657  -.504 .151 -.015 -.388 -.537 . .923 -.330 .034 
.219 -.403 ,298 -.087 -313.336 

.018  -.212  .212  -.066  .006 
.004 -.007 .006 -.002 . 000 -. 003 .021 -.020 .006 -.001 

-.045 -087 -.Ob9 .021 -.002 

-295 -.545 -.524  -.078 -.047 

611(~1,~3) .326 -.bo2  -6.779  -.086  .007 
.848 2.291  1.065  1.524 .023 

~ -.545 1.008 -.bo2 .143 -.012 
-.379 -766 -.499 .127 -. 011 

-.583  1.131  -.712  .177 -.015 
i -.078 .143 -.086 .020 -.002 .154  3.213 .184 -.045 .004 
~ .006 -.012 .007 -. 002 . 000 - .014 .026 - . 016  .004 - . O O O  

, .162 -059 .219  .047  .018 
-.618 -1.681 -1.310 -2.893 -.033 

.724  -1.682  1.174  -.311 612(~1,~3) -.092 -564 3.977  .124 -.011 

- .Ob4  -.193 .269  -.092  .009 

-.237  -6.617 -.351 .003 
.013 -.010 .003 -.OOO 

.031 -.152  .119 -.032 - .003 
.028 

6 13 (x 1’x3) -.726 1.827  -1.329 .361 -.032 

.121 -.026 -.081  .037 -.004 .056  .335  -.416  .139 -.014 
.625  1.992  1.575  3.973 

. 001 
.091 -.008 

.024  -.050 .033 -.009 

-.375 .911 -.650  .174  -.016 
.238 6.461 .388 - . lo3 .009 .131 4.137 .ZOO -.052 .005 

-.024 .053  -.036  .010 -.001 - .013 .029  -.019 .005 -.ooo 

.016 -.689 .606  -.170  .015 

.042 .249  .615  .671  1.774  .018 

-. 633  .273  .271  -.144  .017 

-. 002 .038 -.090 .063 -.017 . O O l  
-020 .176 -.016 -. 651 

.947  -2.741  2.115 -.592 
-.359  -13.377 

.139 -.361  -1.074  -2.190  -7.943 -.Ob4 
-.076 

. o s  -.OB3 621(~1,~3) 

-. 317  .619  -.394 
.616 

.097 -.008 
.243 

-1.155 
.760  5.102  .016 

.304 22 
.115 8.642 .137 -.033 .003 

-1.275 6 (x ,x ) -.421 .E11 -.511  .125  -.010 
2.134 1 

-.011 .020 -.013 .003 -.OOO 

4.185 623(x1,x3) .009 

-.025 1 
.160 -.464  -3.412 -.lo7  1.000 3.796 -. 211  .701 -.595 .176 -.017 

-.022 .085  -.075 
. l o 3  -.376 -1.964 -.099 

-7.021 

.OO? -.007 .006 -.002 .ooo 
-.994 -023 -.002 

.082 

- .255 
.139  .094 

.151 

-.036 
.151  1.776 

.021 
.003 -.002 

-3.944 2.355 
2.134 19.845 

2.356 10.435 
-.561 .335 
.t46 -.028 

-7.071 -51.057 

-7.797 -48.070 
13.078 -7.839 

1.853 -1.111 
-.152 .091 

.019 
-.036 

.246 

.021 -.002 
.003 

-. 005 
,000 -.ooo 

. 000 

-. 561 
.304 -.a75 

.335 -.028 
.046 

-.0b0 
.007 

.007 
-.001 

-1.011 1.523 
1.870 -.154 

-1.115 .092 
.265 -.022 

-.022 -002 

-4,058  7.499  30.242  1.067  -3.488 .015  -009 -.023 

.ooo -.ooo .ooo -.ooo 
.006 -.002 .om -.OM -.002 1.067  -1.971  1.177 -.230 .023 

a017 .009  -.025  .010 -.001 631(x1sx3) -4.478  6.276  72.450  1.177 -.097 
-.028  -.016 .043 .323 .002 7.499  -13.859  8.276  -1.971 .162 

-009 -.001 

-. 088 .162  -.097  .023  -.002 .ow 

-21.467 
11.616 

-3.053 
12.820 

.251 

-. 306 
-. 346 

.574 

- .007 
.083 

-21.466 
39.671 

-23.691 

-. 464 
5.642 

-. 187 

-.191 
.331 

-. 004 .044 

-65.517 
-23.690 

-227.364 
-3.369 

.277 
~~ 

.474 
-.e67 

.514 -. 122 

.OdO 

-3.053 
5.642 

-3.369 

- .Ob6 
.a02 

-. 179 
-6.546 

-.196 

-. 004 .Oh6 

- .464 
6.011 

- .Ob6 
.277 

.005 

-.035 
.019 

- .005 
.021 

. 000 

-.375 

-.414 
.694 

-. 008 
.099 

2.702 
-4.993 

2.982 
-.710 

.058 

-1.282 
.694 

-.182 
.765 

.015 

-4.993 

-5.511 
9.228 

1.313 
-.lo8 

- .414 

-.457 
.765 

- .009 
-109 

2.982 
-5.511 

3.291 
-.-Is4 

.Ob4 

.099 
25.052 

.109 
-.026 
.002 

-.710 
-180.377 -. 784 

-.015 
.187 

- . O M  
.015 - .009 
.002 -. 000 

.058 
- . l o 8  . ob4 -. 015 . 001 

-3.257 
6.022 

-3.598 
.a57 

-.070 

6.021  -3.595 
-11.127 

.856 
6.641  218.677 

-.070 
.130 

-1.583 
6.645  -3.965 -943 -.078 

.130 -.078 
.944  -.225 

641(Xl*X3) 

-018 -.002 
.018 

-37.749 
19.779 

22.109 
-5.087 

,403 

-36.663 24.536 -6.979 .662 
66.006 -46.361 -1339.469 -1.238 

-38.421  26.992  -7.640 .723 

-. 6 9 1  .489  -.139 
8.778  -6.185 1.757 6 4 2 ( ~ 1 9 ~ 3 )  -. 167 

.013 

d 

- . 000 - . 000 .ooo -.ooo 

- . GOO 

. 000 .ooo -.ooo . 000 .022 
.ooo 1 

.goo -.ooo -.ooo .ooo -.ooo 

.011 .049 -.Ob3 .021  10.558 ~ 

~ 

.ooo  -.ooo . 000 .ooo -.ooo 
.ooo .ooo -.ooo .ooo 

~ 

1 

-.056 -.023 .075 -.029 .003 , 
.051 -.019  -.025  .013 - . 001 

. O O l  -.001 -000 
.002 -.002 .om , 

.ooo -.ow , 
-.016 .011  

.001 -.001 .001 -.DO0 -.946 1 
- .015  ,013 -.ooo -.001 . 000 .Ooo -.ooo .ooo -.OOo .wo i 
-.524  .190  .259 -.132 .015 643(~1,x3) -000 -.w1 .001 -.DO0 .OOO 1 
- . lo6 -.508 -. 001 .002 -.002 .wo -.ow .572 .243 -.769 .301 -.032 

.158  -.lo7 -.025 .023 -.003 -. 000 .ooo -.ooo .ooo -.ooo 

.641 -.217 -110.570 
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