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iy | CHAPTER 1. INTRODUCTION -

£

'Second, the dynamics of a nonlinear system are much richer than the dy-
-namics of a linear system. There are “essentially nonlinear phenomena”
that can take place only in the presence of nonlinearity; hence they can-
not be described or predicted by linear models. Examples of essentially
nonlinear phenomena are

e Finite escape time: The state of an unstable linear system goes to in-
finity as time approaches infinity; a nonlinear system’s state, however,
can go to infinity in finite time.

o Multiple isolated equilibria: a linear system can have only one isolated
equilibrium point; hence it can have only one steady-state operating

' point which attracts the state of the system irrespective of the initial
state. A nonlinear system can have more than one isolated equilib-
rium point. The state may converge to one of several steady-state
operating points, depending on the initial state of the system.

e Limit cycles: For a linear time-invariant system to oscillate, it must
have a pair of eigenvalues on the imaginary axis, which is a nonro-
bust condition that is almost impossible to maintain in the presence
of perturbations. Even if we do, the amplitude of oscillation will be
dependent on the jnitial state. In real life stable oscillation must be
produced by nonlinear systems. There are nonlinear systems which
can go into an oscillation of fixed amplitude and frequency, irrespec-
tive of the initial state. This type of oscillation is known as a limit
cycle.

o Subharmonic, harmonic, or almost-periodic oscillations: A stable lin-
ear system under a periodic input produces an output of the same
frequency. A nonlinear system under periodic excitation can oscil-
late with frequencies which are submultiples or multiples of the input
frequency. It may even generate an almost-periodic oscillation, an
example of which is the sum of periodic oscillations with frequencies
which are not multiples of each other.

e Chaos: A nonlinear system can have a more complicated steady-
state behavior that is not equilibrium, periodic oscillation, or almost-
periodic oscillation. Such behavior is usually referred to as chaos.
Some of these chaotic motions exhibit randomness, despite the deter-
ministic nature of the system.

o Multiple modes of behavior: It is not unusual for two or more modes
of behavior to be exhibited by the same nonlinear system. An un-
forced system may have more than one limit cycle. A forced sys-
tem with periodic excitation may exhibit harmonic, subharmonic, or
more complicated steady-state behavior, depending upon the ampli-
tude and frequency of the input. It may even exhibit a discontinuous
jump in the mode of behavior as the amplitude or frequency of the
excitation is smoothly changed. - '
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Simple circuits Circuits containing nonlinear resistors have properties totally
different from those which have only linear resistors. The following examples
illustrate some of the differences.

Example 1 (nonlinear resistors can produce harmonics) Consider a sinu-
soidal voltage waveform,

v(t) =2 sin wt (in volts) t=0

where the constant o is the angular frequency in radians per second, i.e.,
w =27f where f is frequency in hertz. If the waveform is applied to a
linear resistor of 10 Q, the current is i(f) = 0.2 sin w¢ (in amperes), t=0.

Let us apply the same voltage waveform to a nonlinear resistor which
has the v-i characteristic shown in Fig. 1.15a, where

- i=i(v)

We wish to determine the current waveform i(t) for +=0. In simple
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Figure 1.15 An example illustrating a special clipping property of nonline

stors; the negative
half of the waveform has been clipped. ' :




