First-order nonlinear systems

(from Strogatz, Nonlinear dynamics and chaos, Perseus Books, Cambridge, Ma, 1994, Ch. 2)

2.1 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear systems.
Here we illustrate this point by a simple example. Along the way we will introduce
one of the most basic techniques of dynamics: interpreting a differential equation
as a vector field.

Consider the following nonlinear differential equation:

X =sinx. (1)

To emphasize our point about formulas versus pictures, we have chosen one of the
few nonlinear equations that can be solved in closed form. We separate the vari-
ables and then integrate:

dx
sinx

dt =

which implies

t =Jcscx dx

=—In|escx+cotx| + C.

To evaluate the constant C, suppose that x = x, at t =0. Then C = In|csc.x, +cot x, |.

Hence the solution is

f=1n CSC x;, + cot x,

(2)

cscx+cotx

This result is exact, but a headache to interpret. For example, can you answer
the following questions?

1. Suppose x, = /4 ; describe the qualitative features of the solution x(r)
for all # > 0. In particular, what happens as t — = ?
2. For an arbitrary initial condition x,, what is the behavior of x(r) as
f— o0 7
Think about these questions for a while, to see that formula (2) is not transparent.
In contrast, a graphical analysis of (1) is clear and simple, as shown in Figure
2.1.1. We think of ¢ as time, x as the position of an imaginary particle moving



along the real line, and x as the velocity of that particle. Then the differential
equation x = sin x represents a vector field on the line: it dictates the velocity vec-
tor x ateach x. To sketch the vector field, it is convenient to plot x versus x, and
then draw arrows on the x-axis to indicate the corresponding velocity vector at
each x. The arrows point to the right when x > 0 and to the left when x < 0.

Figure 2.1,1

Here's a more physical way to think about the vector field: imagine that fluid
is flowing steadily along the x-axis with a velocity that varies from place to
place, according to the rule x = sin x. As shown in Figure 2.1.1, the flow is to the
right when x >0 and to the left when x < 0. At points where x =0, there is no
flow; such points are therefore called fixed points. You can see that there are two
kinds of fixed points in Figure 2.1.1: solid black dots represent stable fixed
points (often called attractors or sinks, because the flow is toward them) and
open circles represent wunstable fixed points (also known as repellers or

sources).
Armed with this picture, we can now easily understand the solutions to the dif-

ferential equation x = sin x. We just start our imaginary particle at x, and waich
how it is carried along by the flow.
This approach allows us to answer the questions above as follows:

1. Figure 2.1.1 shows that a particle starting at x, = 7/4 moves to the
right faster and faster until it crosses x = /2 (where sinx reaches its
maximum). Then the particle starts slowing down and eventually ap-
proaches the stable fixed point x = & from the left. Thus, the qualita-
tive form of the solution is as shown in Figure 2.1.2.

Note that the curve is concave up at first, and then concave down;
this corresponds to the initial acceleration for x < /2, followed by the
deceleration toward x = 7.



2. The same reasoning applies to any initial condition x,. Figure 2.1.1
shows thatif x >0 initially, the particle heads to the right and asymptot-
ically approaches the nearest sta-

ble fixed point. Similarly, if

L — x <0 initially, the particle ap-
proaches the nearest stable fixed
point to 1its left. If x =0, then x
remains constant. The qualitative

i1 : ..
4 form of the solution for any ini-
 tal condition is sketched in Fig-
_ ure 2.1.3.
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In all honesty, we should admit that a picture can’t tell us certain quantitative
things: for instance, we don’t know the time at which the speed | x| is greatest. Butin
many cases qualitative information is what we care about, and then pictures are fine.



2.2 Fixed Points and Stability

The ideas developed in the last section can be extended to any one-dimensional
system x = f(x). We just need to draw the graph of f(x) and then use it to sketch
the vector field on the real line (the x-axis in Figure 2.2.1).
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Figure 2.2.1

EXAMPLE 2.2.1:

Find all fixed points for x = x* — 1, and classify their stability.

Solution: Here f(x)=x*-1. To find the fixed points, we set f(x*)=0 and
solve for x *. Thus x* = £1. To determine stability, we plot x*> —1 and then sketch
the vector field (Figure 2.2.2). The flow is to the right where x> —1>0 and to the
left where x* —1 < 0. Thus x* = —1 is stable, and x* =1 is unstable. m

F=x" -1
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Figure 2.2.2



2.4 Linear Stability Analysis

So far we have relied on graphical methods to determine the stability of fixed
points. Frequently one would like to have a more quantitative measure of stability,
such as the rate of decay to a stable fixed point. This sort of information may be
obtained by linearizing about a fixed point, as we now explain.

Let x* be a fixed point, and let 77(7) = x(r)— x* be a small perturbation away
from x *. To see whether the perturbation grows or decays, we derive a differential
equation for 77. Differentiation yields

=4 (x-x)=1%,

since x * is constant. Thus n=x = f(x) = f(x*+ n). Now using Taylor’s expan-
sion we obtain

fx*+m= f(xH+nf'(x¥)+0n"),

where O(17°) denotes quadratically small terms in 77 . Finally, note that f(x*)=0
since x * is a fixed point. Hence

n=nf"(x*)+0m").

Now if f’(x*)#0,the O(n’) terms are negligible and we may write the approxi-
mation

n=nf'(x*).

This is a linear equation in 1, and is called the linearization about x *. It shows
that the perturbation n(t) grows exponentially if ['(x*)>0 and decays if
fl(x¥)<0. If f'(x*)=0, the O(n7’) terms are not negligible and a nonlinear
analysis is needed to determine stability, as discussed in Example 2.4.3 below.

The upshot is that the slope f’(x*) at the fixed point determines its stability. If
you look back at the earlier examples, you’ll see that the slope was always nega-
tive at a stable fixed point. The importance of the sign of f’(x*) was clear from
our graphical approach; the new feature is that now we have a measure of how sta-
ble a fixed point is—that’s determined by the magnitude of f'(x*). This magni-
tude plays the role of an exponential growth or decay rate. Its reciprocal 1/|f"(x*)|
is a characteristic time scale; it determines the time required for x(r) to vary sig-
nificantly in the neighborhood of x *.



EXAMPLE 2.4.1:

Using linear stability analysis, determine the stability of the fixed points for
x =sinx.

Solution: The fixed points occur where f(x)=sinx =0. Thus x* = kmr , where
k 1s an integer. Then

l, £k even

"(x*) = cos kTt =
Sy =coskn {-I,ksdd.

Hence x * is unstable if k is even and stable if k is odd. This agrees with the re-
sults shown in Figure 2.1.1. m

EXAMPLE 2.4.3:

What can be said about the stability of a fixed point when f(x*)=07?

Solution: Nothing can be said in general. The stability is best determined on a
case-by-case basis, using graphical methods. Consider the following examples:

(a)x=—x"  (b)x=x" (c) x=x° (d) x=0

Each of these systems has a fixed point x* =0 with f"(x*)=0. However the sta-
bility is different in each case. Figure 2.4.1 shows that (a) is stable and (b) is unsta-
ble. Case (c) is a hybrid case we’'ll call half-stable, since the fixed point is
attracting from the left and repelling from the right. We therefore indicate this type
of fixed point by a half-filled circle. Case (d) is a whole line of fixed points; pertur-
bations neither grow nor decay.
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Figure 2.4.1



