Bifurcations in second-order nonlinear systems

(from Strogatz, Nonlinear dynamics and chaos, Perseus Books, Cambridge, Ma, 1994, Ch. 8)

The bifurcations of fixed points discussed in Chapter 3 have analogs in two dimen-
sions (and indeed, in all dimensions). Yet it turns out that nothing really new hap-
pens when more dimensions are added—all the action is confined to a
one-dimensional subspace along which the bifurcations occur, while in the extra
dimensions the flow is either simple attraction or repulsion from that subspace, as
we'll see below.

Saddle-Node Bifurcation
The saddle-node bifurcation is the basic mechanism for the creation and de-
struction of fixed points. Here's the prototypical example in itwo dimensions:
i=u-x°
y==y. (1)

In the x-direction we see the bifurcation behavior discussed in Section 3.1, while
in the y-direction the motion is exponentially damped.

Consider the phase portrait as u varies. For u >0, Figure 8.1.1 shows that
there are two fixed points, a stable node at (%, y¥) = (-.jﬁ, {1y and a saddle at
[—-\i'_l_l. 0). As u decreases, the saddle and node approach each other, then collide
when y = 0, and finally disappear when u < 0.
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Figure B8.1.1

Even after the fixed points have annihilated each other, they continue 1o influence
the flow—as in Section 4.3, they leave a ghost, a bottleneck region that sucks trajec-
tories in and delays them before allowing passage out the other side. For the same
reasons as in Section 4.3, the time spent in the bottleneck generically increases as
(i =y, where  is the value at which the saddle-node bifurcation occurs.



Some applications of this scaling law in
condensed-matter physics are discussed
by Strogatz and Westervelt (1989).
Figure 8.1.1 is representative of the
following more general situation. Con-
T~ sider a two-dimensional sysiem
x = fix,y), y=gix,y) that depends on
a parameter U . Suppose that for some
value of u the nullclines intersect as
x=0 shown in Figure 8.1.2. Notice that each
Figure 8.1.2 intersection corresponds to a fixed point

since X =0 and y =0 simultaneously. Thus, to see how the fixed points move as y
changes, we just have to watch the intersections, Now suppose that the nullclines
pull away from each other as u varies, becoming rangent at g = yg_. Then the fixed
points approach each other and collide when g = y_; after the nullclines pull apart,
there are no intersections and the fixed points disappear with a bang. The point is
that all saddle-node bifurcations have this character locally.

EXAMPLE 8.1.1:
Consider the following example, derived from a model of a genetic control system.

In dimensionless form, the equations are

x=—ax+y
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The constants a and b are supposed to be positive; while a may vary, b is kept fixed.

Show that the system has three fixed points when a < a, , where a_ is (o be de-
termined. Show that two of these fixed poinis coalesce in a saddle-node bifurcation
when a = a,. Then sketch the phase portrait for a <a_

The problem can be faced in a geometric way, by drawing the two nullclines y = ax and
by =x%/ (1 + %%



For small a there are three in-
tersections, as in Figure 8.1.3. As
/ a increases, the top two intersec-
- tions approach each other and
bl +x") collide when the line intersects
the curve tangentially. For larger
values of a, those fixed points
disappear, leaving the origin as

the only fixed point.
Figure 8.1.3 To find a_, we compute (he
fixed points directly and find where they coalesce. The nullclines intersect when
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One solution is x* =0, in which case y*=0. The other intersections satisty the
quadratic equation

ab(l1+x)=x (2)
which has two solutions

1 ++/1-da’h’

2ab

x*=

if | —4a’b® >0, i.e., 2ab <. These solutions coalesce when 2ab = 1. Hence

a,=12b.

Note that, with a at the bifurcation value 1/2b, the fixed point is x* = 1.

The nullclines (Figure 8.1.4) provide a lot of information about the phase por-
trait for a < @ . The vector field 1s vertical on the line y = ax and horizontal on the
sigmoidal curve, Other arrows can be sketched by noting the signs of x and y. It
appears that the middle fixed point is a saddle and the other two are sinks. To con-
firm this, we turn now to the classification of the fixed points.

N

.
e




The Jacobian matrix at (x, y) is

{ —a 1
A= .
L ety —b

At x* = 0, the eigenvalues are both negative, hence the origin is always a stable node.
In the two other fixed points (a < a;), the eigenvalues are given by (using Eq. 2):

)\2+(a+b))\+ab(x*)2—_1—0 )
S
x*) +1

Hence, at the middle fixed point, which has 0 < x* <1, we have two real eigenvalues of
opposite sign. Therefore, this fixed point is a saddle point.
The other fixed point has always x* > 1 and hence is always a stable node.

The phase portrait is plotted in Figure 8.1.5. By looking back at Figure 8.1.4, we
can see that the unstable manifold of the saddle is necessarily trapped in the narrow
channel between the two nullclines. More importantly, the stable manifold sepa-
rates the plane into two regions, each a basin of attraction for a sink.
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Figure 8.1.5

Transcritical and Pitchfork Bifurcations

Using the same idea as above, we can also construct prototypical examples of
transcritical and pitchfork bifurcations at a stable fixed point. In the x-direction
the dynamics are given by the normal forms discussed in Chapter 3, and in the
y-direction the motion is exponentially damped. This yields the following ex-
amples:

i=Mx-x', ¥=-y (transcritical)

i=px—x', v=-) (supercritical pitchfork)

f=px+x, v=-) (suberitical pitchfork)
The analysis in each case follows the same pattern, so we'll discuss only the super-
critical pitchfork, and leave the other two cases as exercises.



EXAMPLE 8.1.2:

Plot the phase portraits for the supercritical pitchfork system ¥ =px-x’,
y=-y,for gy<0,u=0,and u>0.

Solution: For p <0, the only fixed point is a stable node at the origin. For
p =0, the origin is still stable, but now we have very slow (algebraic) decay along
the x-direction instead of exponential decay; this is the phenomenon of “critical
slowing down™ discussed in Section 3.4 and Exercise 2.4.9. For u >0, the origin
loses stability and gives birth to two new stable fixed points symmetrically located
at (x* y*)= [j:x!'p .0). By computing the Jacobian at each point, you can check
that the origin is a saddle and the other two fixed points are stable nodes. The phase
portraits are shown in Figure 8.1.6. m
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Figure B.1.6

8.2 Hopf Bifurcations

Suppose a two-dimensional system has a stable fixed point. What are all the possi-
ble ways it could lose stability as a parameter i varies? The eigenvalues of the Ja-
cobian are the key. If the fixed point is stable, the eigenvalues 4, A, must both lie

in the left half-plane Re A < 0. Since the A4 's satisfy a quadratic equation with real
coefficients, there are two possible pictures: either the eigenvalues are both real
and negative (Figure 8.2.1a) or they are complex conjugates (Figure 8.2.1b). To
destabilize the fixed point, we need one or both of the eigenvalues to cross into the

right half-plane as u varies.
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In Section 8.1 we explored the cases in which a real eigenvalue passes through
A =0. These were just our old friends from Chapter 3, namely the saddle-node,
transcritical, and pitchfork bifurcations. Now we consider the other possible sce-
nario, in which two complex conjugate eigenvalues simultaneously cross the imag-
inary axis into the right half-plane.

Supercritical Hopf Bifurcation

Suppose we have a physical system that settles down to equilibrium through
exponentially damped oscillations. In other words, small disturbances decay after
“ringing” for a while (Figure 8.2.2a). Now suppose that the decay rate depends on
a control parameter u. If the decay becomes slower and slower and finally
changes to growth at a critical value p , the equilibrium state will lose stability. In
many cases the resulting motion is a small-amplitude, sinusoidal, limit cycle oscil-
lation about the former steady state (Figure 8.2.2h). Then we say that the system
has undergone a supercritical Hopf bifurcation.

In terms of the flow in phase
N N~~~  (a)p<p, SPAcE,2 supercritical Hopf bifur-
cation occurs when a stable spiral
changes into an unstable spiral
surrounded by a small, nearly el-
’\A/\/\/\/\/\/\ (®)H > He Yiptical limit eycle, Hopf bifurca-
tions can occur in phase spaces of
Figure 8.2.2

any dimension n22, but as in
the rest of this chapter, we'll restrict ourselves to two dimensions.

A simple example of a supercritical Hopf bifurcation is given by the following
system:
F=pr-r

0=a+br.
There are three parameters: i controls the stability of the fixed point at the origin,

@ gives the frequency of infinitesimal oscillations, and » determines the depen-
dence of frequency on amplitude for larger amplitude oscillations.



Figure 8.2.3 plots the phase portraits for g above and below the bifurcation.
When g <0 the origin r =0 is a stable spiral whose sense of rotation depends on
the sign of @ . For g = 0 the origin is still a stable spiral, though a very weak one:
the decay is only algebraically fast. (This case was shown in Figure 6.3.2. Recall
that the linearization wrongly predicts a center at the origin,) Finally, for g >0
there is an unstable spiral at the origin and a stable circular limit cycle at r= ,ﬁt :
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Figure 8.2.3
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To see how the eigenvalues behave during the bifurcation, we rewrite the sys-
tem in Cartesian coordinates; this makes it easier to find the Jacobian. We wrile
x=rcos8, y=rsin@. Then

&= icosf - r@sinf
=(ur—r')cos@—r(®+br')sinf
:{F"L’f! +}‘]])I - (W+b[x: +y:]}y
= lx =@y + cubic terms

and similarly

V= @x+ [y+cubic terms.

50 the Jacobian at the origin is

=i
[t ).
® u

which has eigenvalues
A=putio.

As expected, the eigenvalues cross the imaginary axis from left to right as g in-
creases from negative to positive values.



Rules of Thumb

Our 1dealized case illustrates two rules that hold generically for supercntical
Hopf bifurcations:

1. The size of the limit cycle grows continuously from zero, and increases
proportional to /u— u_, for g close to f_.

2. The frequency of the limit cycle is given approximately by @ =Im A,
evaluated at g = p_. This formula is exact at the birth of the limit cycle,
and correct within O(u — i) for u close to u_. The period is therefore

T=2x/lmA)+Ou—-pu,).

Subcritical Hopf Bifurcation

Like pitchfork bifurcations, Hopf bifurcations come in both super- and subcritical
varieties. The subcritical case is always much more dramatic, and potentially danger-
ous in engineering applications. After the bifurcation, the trajectories must jump to a
distant atiractor, which may be a fixed point, another limit cycle, infinity, or—in
three and higher dimensions—a chaotic attractor. We'll see a concrete example of
this last, most interesting case when we study the Lorenz equations (Chapter 9).

But for now, consider the two-dimensional example

. ] 3
r=lUr+r —r

6=m+br.

The important difference from the earlier supercritical case is that the cubic term
r' is now destabilizing; it helps to drive trajectories away from the origin.

The phase portraits are shown in Figure 8.2.5. For u < 0 there are two attractors, a
stable limit cycle and a stable fixed point at the origin. Between them lies an unstable
cycle, shown as a dashed curve in Figure 8.2.5; it’s the player to walch in this sce-
nario. As 4 increases, the unstable cycle tightens like a noose around the fixed point.

A subcritical Hopf bifurcation occurs at g = 0, where the unstable cycle shrinks o
zero amplitude and engulfs the origin, rendering it unstable. For g >0, the large-
amplitude limit cycle is suddenly the only attractor in town. Solutions that used to re-
main near the origin are now forced o grow into large-amplitude oscillations,
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Note that the system exhibits hysteresis: once large-amplitude oscillations have
begun, they cannot be turned off by bringing u back o zero. In fact, the large os-
cillations will persist until @ =—1/4 where the stable and unstable cycles collide
and annihilate. This destruction of the large-amplitude cycle occurs via another
type of bifurcation, to be discussed in Section 8.4,

Subcritical Hopf bifurcations occur in the dynamics of nerve cells (Rinzel and
Ermentrout 1989), in acroelastic flutter and other vibrations of airplane wings
(Dowell and llgamova 1988, Thompson and Stewart 1986), and in instabilities of
fluid flows (Drazin and Reid 1981).

Subcritical, Supercritical, or Degenerate Bifurcation?

Given that a Hopf bifurcation occurs, how can we tell if it’s sub- or supercriti-
cal? The linearization doesn’t provide a distinction: in both cases, a pair of eigen-
values moves from the left to the right half-plane.

An analvtical criterion exists, but it can be difficult to use (see Exercises
8.2.12-15 for some tractable cases). A quick and dirty approach is to use the com-
puter. If a small, attracting limit cycle appears immediately after the fixed poimt
goes unstable, and if its amplitude shrinks back to zero as the parameter is re-
versed, the bifurcation is supercritical; otherwise, it’s probably subcritical, in
which case the nearest attractor might be far from the fixed point, and the system
may exhibit hysteresis as the parameter is reversed. Of course, computer experi-
ments are not proofs and you should check the numerics carefully before making
any firm conclusions,



