Bifurcations in 1 order nonlinear systems

(from Strogatz, Nonlinear dynamics and chaos, Perseus Books, Cambridge, Ma, 1994, Ch. 3)

As we've seen in Chapter 2, the dynamics of vector fields on the line is very limited:
all solutions either settle down to equilibrium or head out to te=. Given the triviality
of the dynamics, what’s interesting about one-dimensional systems? Answer: De-
pendence on parameters. The qualitative structure of the flow can change as parame-
ters are varied. In particular, fixed points can be created or destroyed, or their
stability can change. These qualitative changes in the dynamics are called bifurca-
fions, and the parameter values at which they occur are called bifurcation points.

3.1 Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are cre-
ated and destroyed. As a parameler is varied, two fixed points move toward each
other, collide, and mutually annihilate.

The prototypical example of a saddle-node bifurcation is given by the first-

order system
Xx=r+x (1)

where r is a parameler, which may be positive, negative, or zero. When r is nega-
tive, there are two fixed points, one stable and one unstable (Figure 3.1.1a).
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As r approaches 0 from below, the parabola moves up and the two fixed points move
toward each other. When r = 0, the fixed points coalesce into a half-stable fixed point
at x* =0 (Figure 3.1.1b). This type of fixed point is extremely delicate—it vanishes
as soon as r >0, and now there are no fixed points at all (Figure 3.1.1¢).

In this example, we say that a bifurcation occurred at r =0, since the vector
fields for r <0 and r >0 are qualitatively different.



Graphical convention

There are several ways to depict a saddle-node bifurcations. The most common is
reported in the figure below. To distinguish between stable and unstable fixed points, a
solid line is used for stable points and a broken line for unstable ones.

This picture is called the
bifurcation diagram for the saddle-

unstable ~ . _ ; node bifurcation.
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Terminology

Bifurcation theory is rich in conflicting terminology and, frequently, different terms are
used for the same thing . For example, the saddle-node bifurcation
is sometimes called a fold bifurcation (because the curve in Figure 3.1.4 has a

fold in it) or a rurning-point bifurcation (because the point (x,r)=(0,0) is a
“turning point.”"} Admittedly, the term saddle-node doesn’t make much sense for
vector fields on the line, The name derives from a completely analogous bifurca-
tion seen in a higher-dimensional context, such as vector fields on the plane,
where fixed points known as saddles and nodes can collide and annihilate (see
Section 8.1).



3.2 Transcritical Bifurcation

There are certain scientific situations where a fixed point must exist for all values
of a parameter and can never be destroyed. For example, in the logistic equation
and other simple models for the growth of a single species. there is a fixed point at
zero population, regardless of the value of the growth rate. However, such a fixed
point may change its stability as the parameter is vaned. The transcritical bifurca-
tion is the standard mechanism for such changes in stability.

The normal form for a transcritical bifurcation is

i=rx—x". (1)

This looks like the logistic equation of Section 2.3, but now we allow x and r to
be either positive or negative.

Figure 3.2.1 shows the vector field as r varies. Note that there is a fixed point at
x*=0 for all values of r.

i £ i
TRI X ——ij x
{a) r<0 ih) r=0 {c) r=0

Figure 3.2.1

For r <0, there is an unstable fixed point at x* =r and a stable fixed point at
x*=0. As r increases, the unstable fixed point approaches the origin, and coa-
lesces with it when r=10. Finally, when r >0, the origin has become unstable,
and x* =r is now stable. Some people say that an exchange of stabilities has
taken place between the two fixed points.

Please note the important difference between the saddle-node and transcritical
bifurcations: in the transcritical case, the two fixed points don’t disappear after the
bifurcation—instead they just switch their stability.

Figure 3.2.2 shows the bifurcation diagram for the transcritical bifurcation. As
in Figure 3.1.4, the parameter r is regarded as the independent variable, and the
fixed points x* =0 and x* = r are shown as dependent variables.
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3.4 Pitchfork Bifurcation

We turn now to a third kind of bifurcation, the so-called pitchfork bifurcation.
This bifurcation is common in physical problems that have a symmeitry. For ex-
ample, many problems have a spatial symmetry between left and right. In such
cases, fixed poinis tend to appear and disappear in symmetrical pairs. In the buck-
ling example of Figure 3.0.1, the beam is stable in the vertical position if the load
is small. In this case there is a stable fixed point corresponding to zero deflection.
But if the load exceeds the buckling threshold, the beam may buckle to either the
left or the right. The vertical position has gone unstable, and two new symmeiri-
cal fixed points, corresponding to left- and right-buckled configurations, have

been born.

There are two very different types of pitchfork bifurcation. The simpler type is

stable

called supercritical, and will be discussed first.

Supercritical Pitchfork Bifurcation

The normal form of the supercritical pitchfork bifurcation is

s i
X=ri—x .



Note that this equation is invariant under the change of variables x — —x . That
is, if we replace x by —x and then cancel the resulting minus signs on both sides
of the equation, we get (1) back again. This invariance is the mathematical ex-
pression of the left-right symmetry mentioned earlier. (More technically, one
says that the vector field is eguivariant, but we’ll use the more familiar lan-
guage.)

Figure 3.4.1 shows the vector field for different values of r.

i i i
x x i \ x

(a) r<0 ib) r=0 (c) r>0

[ ]

Figure 3.4.1

When r < 0, the origin is the only fixed point, and it is stable. When r = 0, the ori-
gin is still stable, but much more weakly so, since the linearization vanishes. Now
solutions no longer decay exponentially fast—instead the decay is a much slower
algebraic function of time (recall Exercise 2.4.9). This lethargic decay is called
critical slowing down in the physics literature. Finally, when r > 0, the origin has
become unstable. Two new stable fixed points appear on either side of the origin,
symmetrically located at x* = +/r.

The reason for the term “pitchfork™ becomes clear when we plot the bifurcation
diagram (Figure 3.4.2). Actually, pitchfork trifurcation might be a better word!
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Subcritical Pitchfork Bifurcation

In the supercritical case x = rx — %’ discussed above, the cubic term is stabiliz-
ing: it acts as a restoring force that pulls x{¢) back toward x = (. If instead the cu-
bic term were destabilizing, as in

f=rr+x, (2)

then we'd have a subcritical piichfork bifurcation. Figure 3.4.6 shows the bifurca-
tion diagram.
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Compared to Figure 3.4.2, the pitchfork is inverted. The nonzero fixed points
x*=++/—r are unstable, and exist only below the bifurcation {r < (), which moti-
vates the term “suberitical.” More importantly, the origin is stable for » <0 and un-
stable for » > 0, as in the supercritical case, but now the instability for » > 0 is not
opposed by the cubic term—in fact the cubic term lends a helping hand in driving the
trajectories out to infinity! This effect leads to blow-up: one can show that
x(r) — Zeo in finite time, starting from any initial condition x,, # 0 (Exercise 2.5.3).

In real physical systems, such an explosive mstability 1s usually opposed by the
stabilizing influence of higher-order terms. Assuming that the system is still sym-
metric under x — —x, the first stabilizing term must be x” . Thus the canonical ex-
ample of a system with a subcritical pitchfork bifurcation is

T=r+x —x (3}

There’s no loss in generality in assuming that the coefficients of x° and x° are 1
(Exercise 3.5.8).

The detailed analysis of (3) is left to you (Exercises 3.4.14 and 3.4.15). But we will
summarize the main results here. Figure 3.4.7 shows the bifurcation diagram for (3).



For small x, the picture looks just like

Figure 3.4.6: the origin is locally sta-
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0 : e points bifurcate from the origin when
r -0 r r = 0. The new feature, due to the x°
e term, is that the unstable branches turn
"\.______ around and become stable at r =1,
— where r, <0. These stable large-

amplitude branches exist forall r > r,.

Figure 3.4.7

There are several things to note about Figure 3.4.7:

1. In the range r, <r <0, two qualitatively different stable states coexist,
namely the origin and the large-amplitude fixed points. The initial con-
dition x, determines which fixed point is approached as t — == . One
consequence is that the origin is stable to small perturbations, but not to
large ones—in this sense the origin is locally stable, but not globally
stable.

2. The existence of different stable states allows for the possibility of
Jumps and hysteresis as r is varied. Suppose we start the system in the
state x* = 0, and then slowly increase the parameter r (indicated by an
arrow along the r-axis of Figure 3.4.8).
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Then the state remains at the origin until r =0, when the origin loses
stability. Now the slightest nudge will cause the state to jump to onc of
the large-amplitude branches. With further increascs of r, the state
moves out along the large-amplitude branch. If » is now decreased, the
state remains on the large-amplitude branch, even when r is decreased
below 0! We have to lower r even further (down past r,) to get the
state to jump back to the origin. This lack of reversibility as a parame-
ter is varied is called hysteresis.

. The bifurcation at r, is a saddle-node bifurcation, in which stable and
unstable fixed points are born “out the clear blue sky™ as r is increased
(see Section 3.1).



