
1 The Chua’s oscillator

The Chua’s oscillator is shown in Fig. 1, together with a typical Chua’s diode characteristic. Note
that for R0 = 0 we obtain the (classical) Chua’s circuit.
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Figure 1: Chua’s oscillator and Chua’s diode

1.1 State equations

The circuit used to get the state equations of Chua’s oscillator is shown in Fig. 2, where each
capacitor has been substituted by a voltage source and the inductor by a current source.
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Figure 2: Circuit used to get the state equations of Chua’s oscillator

The state equations are obtained by computing the currents i1 and i2 through the two voltage
sources and the voltage v3 across the current source and remembering that

i1 = C1

dv1

dt
, i2 = C2

dv2

dt
, v3 = L

di3
dt
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The state equations are:































dv1

dt
=

1
C1

[(v2 − v1)G − f(v1)]

dv2

dt
=

1
C2

[(v1 − v2)G + i3]

di3
dt

= −
1
L

[v2 + R0i3]

with
f(v1) = Gbv1 + 0.5(Ga − Gb)[|v1 + Bp| − |v1 − Bp|]

1.2 Dimensionless state equations

Let us scale time, voltages, and currents by RC2, Bp, and BpG, respectively. Then let us assume
as variables:

τ =
t

RC2

, x =
v1

Bp

, y =
v2

Bp

, z =
i3

BpG

With these assumptions, we obtain the following dimensionless state equations:































dx
dτ

= α(−x + y − f(x))

dy
dτ

= x − y + z

dz
dτ

= −βy − γz

with

α =
C2

C1

, β = R2C2/L , γ = RR0C2/L

and with

f(x) = m1x + 0.5(m0 − m1)[|x + 1| − |x − 1|] , m0 = GaR , m1 = GbR

Note that the case γ = 0 corresponds to the (classical) Chua’s circuit.
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1.3 Equilibrium points

The equilibrium points are obtained setting to zero the derivatives in the state equations. That
means that the capacitors are substituted by open circuits and the inductor by a short circuit,
leading to the circuit of Fig. 3. Graphically, the equilibrium points are obtained by intersecting the
“load line” of slope −1/(R + R0) with the Chua’s diode characteristic.

R

R0 vR

iR

Figure 3: Circuit used to compute the equilibrium points

Figure 4: The equilibrium points are obtained by intersecting the “load line” of slope −1/(R+R0)
with the Chua’s diode characteristic.
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2 Designing the Chua’s diode

In this Section we will design a resistive one-port with a piecewise linear characteristic, to be used
in the realization of the Chua’s oscillator of Fig. 1. The operational amplifier is used as a basic
element. Before giving any design formulas, let us briefly summarize the main properties of the
ideal operational amplifier.

2.1 The ideal operational amplifier

The symbol of the ideal operational amplifier (op-amp) and its transfer characteristic are shown in
Fig. 5. The equivalent circuits for linear and saturation regions are shown in Fig. 6.
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Figure 5: Symbol of the ideal operational amplifier and its transfer characteristic.
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Figure 6: Equivalent circuits for linear and saturation regions.
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2.2 A locally active piecewise resistor

The circuit used is shown in Fig. 7. Its input resistance Re is given by the ratio v/i. To evaluate
Re, let us first observe that, due to the constraints imposed by the op amp, the voltage of the
inverting input (with respect to ground) is v. Hence

i3 = v/R3

and

vu = (R2 + R3)i3 = v
R2 + R3

R3

Since

i =
v − vu

R1

we have

i = −
R2

R1R3

v

and hence

Re = v/i = −
R1R3

R2

If we set R1 = R2 we get
Re = −R3

v

R1

R2

R3

i3

i

Re

vu

�

�

�

�

Re = v/i = −
R1R3

R2

Figure 7: A circuit exhibiting a negative resistance Re = v/i = −
R1R3

R2
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Figure 8: Equivalent circuit when the op amp works in its positive saturation region (v > Bp =
R3

R2 + R3

Es)

The above equations are valid as far as the op amp works in its linear region, that is as far
as |vu| < Es, being Es (Es > 0) the saturation voltage of the op amp. Taking into account the
expression of vu, the op amp works in its linear region as long as

|v| <
R3

R2 + R3

Es

The breakpoint voltages of the v ÷ i characteristic are symmetric with respect to the origin and
the positive one, Bp, is given by

Bp =
R3

R2 + R3

Es

When v > Bp the op amp enters its positive saturation region. The equivalent circuit is given
in Fig. 8 and the expression of i becomes

i =
v

R1

−
Es

R1

A similar reasoning holds when v < −Bp: in this case the op amp enters its negative saturation
region and now the expression of i becomes

i =
v

R1

+
Es

R1

The whole characteristic is shown in Fig. 9
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Figure 9: Locally-active piecewise resistor characteristic

2.3 Design formulas of the piecewise resistor

According to the results of the previous section and assuming that the saturation voltage Es of
the op amp is known, the inner slope Ga, the outer slope Gb, and the breakpoint voltage Bp (see
Fig. 10) are given by

Ga = −
R2

R1R3

, Gb =
1

R1

, Bp =
1

1 +
R2

R3

Es

Now let us suppose that the inner slope Ga (Ga < 0) , the outer slope Gb, and the value of the
breakpoint voltage Bp are assigned. The design formulas can be obtained from the equations above.
If we assume R1 = R2, from the first two equations we get



















R1 = R2 =
1
Gb

R3 = −
1

Ga
(Ga < 0)

The third equation links the breakpoint voltage Bp to the saturation voltage Es. Note that Es

is assumed known and fixed at a particular value, that depends on the internal structure of the op
amp and on the used power supply voltages. It is not known a priori but it can be measured. As a
consequence, it turns out that the value of Bp cannot be fixed independently from the ratio Ga/Gb
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(even if R2 is not chosen equal to R1).

Bp =
Es

1 +
R2

R3

=
Es

1 −
Ga

Gb

or, equivalently
EsGb = Bp(Gb − Ga)

Finally, it is worth noting to observe that the above equation also states the continuity of the
characteristic at the breakpoint Bp.

v

i

+Bp

Es

Ga

Gb

Figure 10: Diode design parameters

2.4 The Chua’s diode

The Chua’s diode can be obtained by the parallel connection of two piecewise nonlinear resistors
of the kind described in the previous Subsection, as shown in Fig. 11. Since the voltage v across
the two resistors D1 and D2 is the same, the resulting characteristic is obtained by summing the
currents i1 and i2 for equal values of v, as shown in Fig. 12

v

i2i i1

D1 D2

�

�

Figure 11: Two piecewise linear resistor connected in parallel

The complete circuit is shown in Fig. 13, along with the analysis and design equations for each
diode.

8



v

i1

−Bp1

+Bp1

Es

−Es

Gb1

Ga1

v
i2

−Bp2

+Bp2

Es

−Es

Gb2
Ga2

v

i = i1 + i2

−Bp2

+Bp2

−Bp1

+Bp1

Es

−Es

Ga = Ga1 + Ga2

Gb = Ga1 + Gb2

Gc = Gb1 + Gb2

Figure 12: Chua’s diode characteristic via parallel connection of two piecewise linear resistors
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ANALYSIS EQUATIONS:

Ga2 = −
1
R6

, (R4 = R5)

Gb2 =
1
R4

Bp2 =
Es

1 +
R5

R6

Ga1 = −
1
R3

, (R1 = R2)

Gb1 =
1
R1

Bp1 =
Es

1 +
R3

R2

DESIGN EQUATIONS:

R4 = R5 =
1

Gb2

R6 = −
1

Ga2

with the constrain:

Bp2 =
Es

1 −
Ga2

Gb2

R1 = R2 =
1

Gb1

R3 = −
1

Ga1

Bp1 =
Es

1 −
Ga1

Gb1

Figure 13: Chua’s diode and analysis and design equations of PWL resistors D1 and D2
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2.5 Evaluation of the design parameters

Referring to Fig. 12, the shape of the desired characteristic is determined by Ga, Gb, Bp2, and Bp1.
The value of Bp1 only influences the extension of the negative-slope region and, hence, it is less
relevant for the final design. Furthermore, the saturation voltage Es is supposed to be known and
equal for both the op amps.

To design the Chua’s diode, we must first compute the values of the slopes Ga1 , Gb1 , Ga2 , and
Gb2 of the two diodes D1 and D2 . First, from Fig. 12 we obtain the following two equations

{

Ga1 + Ga2 = Ga

Ga1 + Gb2 = Gb

Furthermore, the following two constraints (see Fig. 13) hold

{

(Es − Bp2)Gb2 + Bp2Ga2 = 0
(Es − Bp1)Gb1 + Bp1Ga1 = 0

Altogether, we obtain the following system of four equations in the four unknown Ga1 , Gb1 , Ga2 ,
and Gb2



















Ga1 + Ga2 = Ga

Ga1 + Gb2 = Gb

(Es − Bp2)Gb2 + Bp2Ga2 = 0
(Es − Bp1)Gb1 + Bp1Ga1 = 0

Since Gb1 does not appear in the first three equations of the system, they can be solved indepen-
dently from the fourth equation. We obtain







1 1 0
1 0 1
0 Bp2 Es − Bp2













Ga1

Ga2

Gb2






=







Ga

Gb

0







Solving this system we obtain

Ga1 =
GaBp2 + Gb(Es − Bp2)

Es

Ga2 =
(Es − Bp2)(Ga − Gb)

Es

Gb2 =
Bp2(Gb − Ga)

Es

and, from the fourth equation

Gb1 = −
Bp1

Es − Bp1

Ga1

Using the design equations listed in Fig. 13 it is now possible to compute the element values of
the Chua’s diode, as explained in the following Subsection.
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2.6 Design procedure

We are now able to suggest a design procedure for the Chua’s diode. Once again we would like to
stress that the value of Bp1 is not critical and it only should be large enough to ensure that the
dynamics of the attractor remains within the negative-resistance region of the whole characteristic.
Then the design procedure can follow these five steps

1. Choose
R1 = R2 and R4 = R5

2. Evaluate

R3 = −
1

Ga1

=
Es

Gb(Bp2 − Es) − GaBp2

3. Evaluate

R6 = −
1

Ga2

=
Es

(Es − Bp2)(Gb − Ga)

4. Evaluate

R4 =
1

Gb2

=
Es

Bp2(Gb − Ga)

Note that this value is generally high, since the difference Gb − Ga is typically small, and
hence the resistors R4 and R5 do not load significantly the op amp.

5. Evaluate

R1 =
1

Gb1

= −
Es − Bp1

Bp1

1

Ga1

= (1 −
Es

Bp1

)
1

Ga1

If the obtained value of R1 (and R2) is too small and loads the op amp, we can assign smaller
values to Bp1 until a trade off is reached between the length of the negative-resistance region
and the size of R1. Generally, to use off-the-shelf components, one assigns a suitable value to
R1 and then evaluates Bp1

Bp1 = Es/(1 − R1Ga1)

If this value is too small, then a new (smaller) value of R1 is used.

2.7 An example

Assume that the op amps are powered by two 9 V batteries and that the saturation voltage equals
8.3 V. The required slopes in the negative-resistance region – capable to assure interesting dynamic
behaviors – are chosen to be Ga = −0.756 mS and Gb = −0.409 mS. The inner-breakpoint value is
set to Bp2 = 1.08 V. According to the outlined procedure we get

R3 = 2.2 kΩ
R6 = 3.31 kΩ ∼= 3.3 kΩ
R4 = R5 = 22.15 kΩ ∼= 22 kΩ

After some trials, we chose
R1 = R2 = 220 Ω
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The value of the breakpoint Bp1 turns out to be high enough, compared to a saturation voltage of
8.3 V

Bp1 = 7.55 V

3 Designing the Chua’s oscillator

To complete the realization of a Chua’s oscillator, we have still to chose the values of the two
capacitors C1, C2, and of the inductor L. The resistor R0 can be assumed equal to the measured
leakage resistor which models the loss of the real inductor L, whereas the resistor R is used as
bifurcation parameter and hence it is varied in a quite wide range of values. Furthermore, we have
to fix the characteristic of the Chua’s diode, that is the values of Ga, Gb, Bp2, and (less critical) of
Bp1.

All these values should be fixed in such a way that an interesting dynamic behavior is obtained as
R is varied and, possibly, the circuit elements have suitable values, so that off-the-shelf components
can be used.

In the first reported study [1] of the classical Chua’s circuit (i.e. a Chua’s oscillator with
R0 = γ = 0), a strange attractor is obtained by simulating a system of differential equations using
the following set of (scaled) component values:

C1 = 1/9 , C2 = 1 , L = 1/7 , R = 10/7 ,

Bp2 = 1 , Bp1 → ∞ , Ga (inner region slope) = −0.8 , Gb (outer region slope) = −0.5

These values correspond to the following set of dimensionless parameters:

α =
C2

C1

= 9 , β = R2C2/L = 100/7 ∼= 14.286 , γ = RR0C2/L = 0 , m0 = −5/7 , m1 = −8/7

Even if the Chua’s oscillator is considered (with small values of γ, i.e. of R0), extended simulations
show that interesting dynamical behaviors are still observed if similar dimensionless parameter
values are used. To use standard component values, we arbitrarily choose C2 = 100 nF and C1 =
10 nF, that corresponds to α = 10. Furthermore, we choose L = 18 mH and the variable resistor R
in the range of 2 kΩ, that approximately corresponds to the value of β used in [1].

Finally, we use slightly different values for Ga, Gb and Bp2 in order to get standard resistor
values for the Chua’s diode. The value of Bp1 is less critical: it is not fixed “a priori” and is
accepted as long as it is sufficiently high, as explained in the previous Section.

The choice of these values is in part related to the op amp saturation voltage and is generally
done in an heuristic way. For example, in a real circuit where two 9 V batteries are used to power
the op amps, the (measured) saturation voltage equals 8.3 V. In this case, after a few trials, we get
suitable component values (see Subsection 2.7) assuming Ga = −0.756 mS, Gb = −0.409 mS and
setting the inner-breakpoint Bp2 to 1.08 V.

The complete list of the circuit components is given in Tab. 1
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Table 1: Component List

Element Value
R1 220 Ω
R2 220 Ω
R3 2.2 kΩ
R4 22 kΩ
R5 22 kΩ
R6 3.3 kΩ
C1 10 nF
R 2.0 kΩ
C2 100 nF
L 18 mH
R0 (measured) 14 Ω
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