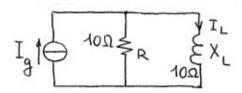

Tempo:90 minuti

Si determini il circuito equivalente di Thevenin del bipolo indicato in figura. (punti 8)



- 2. Si consideri il circuito indicato in figura, ove l'amplificatore operazionale è supposto ideale e funzionante in zona di linearità. Ricorrendo alla trasformata di Laplace,
 - si calcoli, in forma letterale, la funzione di trasmissione $H(s) = V_u(s)/V_g(s)$;
 - si scriva un insieme di istruzioni che permetta di effettuare l'analisi del circuito in regime sinusoidale con PSpice;
 - si calcoli la tensione $v_u(t)$ per $t \ge 0$ nell'ipotesi che $v_g(t)$ sia un gradino di ampiezza $E_0 = 16 \,\text{mV}$ e che siano nulle le condizioni iniziali sui condensatori.

I valori dei componenti sono: $R_1=2\,\mathrm{k}\Omega,\,R_2=10\,\mathrm{k}\Omega,\,C_1=C_2=20\,\mathrm{nF}.$ (punti 16)

3. Nel circuito indicato in figura, funzionante in regime sinusoidale, si calcoli il valore efficace $|I_L|$ della corrente I_L , sapendo che il generatore fornisce una corrente di valore efficace $|I_g|=2\,\mathrm{mA}$ e che $R=X_L=10\,\Omega$. (punti 6)

Regole di trasformazione e trasformate di Laplace elementari

funzione	trasformata
$\frac{\mathrm{d}f}{\mathrm{d}t}$	$sF(s)-f(0^-)$
$\int_{0^{-}}^{t} f(\tau) d\tau$	$\frac{1}{s}F(s)$
$f(t-t_0)u(t-t_0)$	$e^{-t_0s}F(s)$, $t_0 > 0$
$\frac{t^{n-1}e^{-at}}{(n-1)!}$	$\frac{1}{(s+a)^n}$
$e^{-at}\sin\omega_0 t$	$\frac{\omega_0}{(s+a)^2 + {\omega_0}^2}$
$e^{-at}\cos\omega_0 t$	$\frac{s+a}{(s+a)^2+{\omega_0}^2}$